The application of alternative dielectric oils as esters in power transformers is hindered by the lack of knowledge regarding their properties and respecting which are the best techniques to ensure their proper performance. In this sense one of the fields needing an impulse is the impregnation processes of transformers cellulosic materials with these alternative oils, currently impregnated in most of the cases with mineral oils. This paper studies the impregnation behavior of eight usual dielectric solids, with two esters and a traditional mineral oil. Empirical equations of the impregnation evolution with time have been obtained, from these the rigid cellulosic materials present in the transformers and the viscosity of the dielectric oils have been identified as the key materials and properties to consider during impregnation. An adaptation of the current impregnation processes to the alternative oils have been proposed by increasing their temperature from ambient temperature up to 61-74ºC, depending on the viscosity of the oil used.
INDEX TERMS dielectric, ester, impregnation, model, transformer, temperatureThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.
Due to the impact of cellulose of paper insulation on transformer life, it is imperatire to remove moisture from the oil and the solid insulation. Several techniques have been implemented during manufacturing of power transformers to reduce water content in transformers. These drying processes can involve different costs and time, and they can damage the insulation paper. In this work, a drying process has been implemented in the laboratory trying to simulate the most aggressive conditions that can be suffered by the paper in transformer manufacturing in a real industry. Then the effect of the drying process on paper was evaluated using the analysis of mechanical and dielectric properties and the degree of polymerization. Different commercial papers were studied to quantify the possible degradation induced by the drying process. The results of the mechanical strength study showed a reduction on the degree of polymerization from 1100 to 850 after 4 days of drying. The dielectric analysis of the samples showed different behavior in one of the solids evaluated and it was also found a decreased hygroscopic capacity of degraded samples in comparison with new samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.