Resumen. Cualquier diccionario explicativo tradicional inevitablemente contiene ciclos en sus definiciones, es decir, si una palabra es definida en el diccionario y después se usa en una definición, siempre existe un camino en el diccionario que regresa a la misma palabra. En un buen diccionario los ciclos son largos, pero son inevitables. Un diccionario semántico computacional (destinado para el uso de las computadoras) no puede contener ciclos en sus definiciones sin que éstos afecten la capacidad de inferencia lógica de los sistemas computacionales. Denominamos primitivas semánticas a un conjunto de palabras que de ser eliminadas del diccionario lo mantendría sin ciclos, es decir, esas palabras no tendrán la definición en el diccionario, y en este sentido son primitivas. En esta investigación, nuestra meta es mantener la mayor cantidad de palabras en el diccionario, es decir, tener un número mínimo de las primitivas semánticas. Presentamos un método que obtiene el conjunto de primitivas más pequeño obtenido hasta ahora. Para eso utilizamos la representación del diccionario como un grafo dirigido y aplicamos un algoritmo de evolución diferencial que determina el orden en que el grafo debe ser construido.
Partially observable Markov decision processes (POMDPs) are mathematical models for the planning of action sequences under conditions of uncertainty. Uncertainty in POMDPs is manifested in two ways: uncertainty in the perception of model states and uncertainty in the effects of actions on states. The diagnosis and treatment of cerebral vascular diseases (CVD) present this double condition of uncertainty, so we think that POMDP is the most suitable method to model them. In this paper, we propose a model of CVD that is based on observations obtained from neuroimaging studies such as computed tomography, magnetic resonance and ultrasound. The model is designed as a POMDP because the health status of the patient is not directly observable, and only can be deduced, with some probability, from the observations in the cerebral images. The components of the model (states, observations, actions, etc.) were defined based on specialized literature. A diagnosis of the patient’s health status is made and the most appropriate action for the recovery of health is recommended after introducing the observations when operating the model. Consultation of the probable state of health of the patient and alternative actions is also allowed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.