In some domains like industry, medicine, communications, speech recognition, planning, tutoring systems, and forecasting; the timing of observations (symptoms, measures, test, events, as well as faults) play a major role in diagnosis and prediction. This paper introduces a new formalism to deal with uncertainty and time using Bayesian networks called Temporal Bayesian Network of Events (TBNE). In a TBNE each node represents an event or state change of a variable, and an arc corresponds to a causal-temporal relationship. A temporal node represents the time that a variable changes state, including an option of no-change. The temporal intervals can differ in number and size for each temporal node, so this allows multiple granularity. Our approach is contrasted with a Dynamic Bayesian network for a simple medical example. An empirical evaluation is presented for a subsystem of a thermal power plant, in which this approach is used for fault diagnosis and event prediction with good results. The TBNE model can be used for the diagnosis of a cascade of anomalies arising with certain delays; this situation is typical in the diagnosis of medical and industrial processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.