In this study, resonant column tests carried out to investigate the influence of suction on the shear modulus and damping ratio of two compacted lateritic sandy clays from Ghana (GL) and Nigeria (NL) are reported. Each type of soils was tested under two confining pressures and at three suctions. The microstructure of the soils was also studied through a scanning electron microscope. It is found that the effects of suction on maximum shear modulus (G<u><sub></u>0<u></sub></u>) are about 10% larger for GL than NL, mainly due to the existence of smaller aggregates in GL. Moreover, an increase in suction from 0 to 300 kPa for both soils resulted in a lower elastic threshold shear strain, different from the behaviour of other soils reported in the literature. The uniqueness of lateritic soils is likely attributed to their high sesquioxide content and much larger aggregates, which shrink upon an increase in suction. Drying of specimens from 0 to 300 kPa resulted in an increase of about 22% and 100% in initial damping ratio (D<sub>0</sub>) for GL and NL, respectively. The difference in D<sub>0</sub> for GL and NL and is attributed to larger aggregation of NL because of its higher iron sesquioxide content, leading to more cladding
It is widely known that exercise improves inhibitory control; however, the mechanisms behind the cognitive improvement remain unclear. This study analyzes the extant literature on the neuronal effects of exercise on inhibitory control functions. We searched four online databases (Pubmed, Scopus, PsycINFO, and Web of Science) for relevant peer-reviewed studies to identify eligible studies published before September 1, 2021. Among the 4,090 candidate studies identified, 14 meet the inclusion criteria, and the results of 397 participants in these 14 studies are subsequently analyzed. We quantify the neural effects on the entire brain by using GingerALE software and identify 10 clusters of exercise-induced neuronal with either increases/decreases in the superior temporal gyrus (BA 22), precuneus (BA 7), superior frontal gyrus (BA 10), cuneus (BA 19), precuneus (BA 19), caudate, posterior cingulate (BA 19), middle temporal gyrus (B 37), parahippocampal gyrus (BA 30), precentral gyrus (BA 6). Meta-analytic coactivation map (MACM) showed that multiple functional networks overlap with brain regions with activation likelihood estimation (ALE) results. We propose the effect of exercise on neural activity is related to inhibitory control in the extended frontoparietal, default mode network (DMN), visual network, and other pathways. These results provide preliminary evidence of the neural effects of exercise on inhibitory control.
Lateritic clay is widely distributed in tropical and subtropic regions, with distinct engineering properties from other clays. Its stiffness properties, which are often anisotropic and crucial for analysing the serviceability limit state of earthen structures, have not been well understood. This study investigated the cross-anisotropic stiffness of compacted lateritic clay through comprehensive isotropic compression and consolidated drained and undrained shear tests. Both vertically and horizontally cut specimens were tested using triaxial apparatus equipped with bender elements and local strain measurements. The results show that compared with other clays, the lateritic clay shows a weaker dependency of shear modulus to confining pressure, a higher shear modulus at the same confining pressure and a higher degradation rate of stiffness with strain. The lateritic clay behaves like granular material due to its large-size aggregated microstructure and 42% sand content. The widely-used correlations between stiffness parameters and plasticity index seem unsuitable for it. Furthermore, the elastic shear modulus in the vertical direction is slightly higher than in the horizontal direction, and the anisotropy evolves during shearing. A complete set of cross-anisotropic stiffness parameters for both effective and total stress analysis were determined. They are useful for developing constitutive models and analysing earth structures' serviceability involving lateritic soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.