Audio features have been proven useful for increasing the performance of automated topic segmentation systems. This study explores the novel task of using audio embeddings for automated, topically coherent segmentation of radio shows. We created three different audio embedding generators using multi-class classification tasks on three datasets from different domains. We evaluate topic segmentation performance of the audio embeddings and compare it against a text-only baseline. We find that a set-up including audio embeddings generated through a non-speech sound event classification task significantly outperforms our text-only baseline by 32.3% in F1-measure. In addition, we find that different classification tasks yield audio embeddings that vary in segmentation performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.