Hydroxyapatite (HAp) with good mechanical properties is a promising material meant for a number of useful bids in dentistry and orthopedic for biomedical engineering applications for drug delivery, bone defect fillers, bone cements, etc. In this paper, a comprehensive review has been done, by reviewing different literatures related to synthesis techniques, mechanical properties and property testing, method of calcination and characterization of hydroxyapatite which are product of catfish and bovine bones. The discussion is in relations of the obligatory features vital to attain the best properties for the envisioned bid of bone graft. The process approaches that are capable of fabricating the essential microstructure and the ways to advance the mechanical properties of natural mined HAp are reviewed. The standard values for tensile strength were found to be within the range of 40–300 MPa, compressive strength was 400–900 MPa, while Elastic modulus was 80–120 GPa and fracture toughness was 0.6–1 MPa m1/2 (Ramesh et al. in Ceram Int 44(9):10525–10530, 2018; Landi et al. in J Eur Ceram Soc 20(14–15):2377–2387, 2000; Munar et al. in Dent Mater J 25(1):51–58, 2006). Also, the porosity range was 70–85% (Yang et al. in Am Ceram Soc Bull 89(2):24–32, 2010), density is 3.16 g/cm3 and relative density is 95–99.5% (Ramesh et al. 2018; Landi et al. 2000; Munar et al. 2006). The literature revealed that CaP ratio varies in relation to the source and sintering temperature. For example, for bovine bone, a CaP ratio of 1.7 (Mezahi et al. in J Therm Anal Calorim 95(1):21–29, 2009) and 1.65 (Barakat et al. in J Mater Process Technol 209(7):3408–3415, 2009) was obtained at 1100 °C and 750 °C respectively. Basic understanding on the effect of adding foreign material as a strengthening agent to the mechanical properties of HAp is ground factor for the development of new biomaterial (Natural hydroxyapatite, NHAp). Therefore, it is inferred that upon careful combination of main parameters such as compaction pressures, sintering temperatures, and sintering dwell times for production natural HAp (NHAp), mechanical properties can be enhanced. Graphic abstract
The comparative study of natural hydroxyapatite (NHAp) from bovine (B) and catfish (C) bones using different fabrication parameters has been extensively researched through traditional investigation. However, the quantitative effect optimization of a novel mix proportion of hydroxyapatite from these bones, and fabrication parameters have not been examined. Hence, this study presents the effect of the powder mixture, compaction pressure, and sintering temperature (as production parameters) on the experimental mechanical properties of naturally derived HAp. The bovine bone and catfish bone biowastes were used in mixed proportions to produce hydroxyapatite via the sol–gel synthesis protocol. The powders were calcined separately at 900 °C to convert the deproteinized biowaste. Next, the powders were combined chemically (sol–gel) in the appropriate ratios (i.e. 45 g of B: 15 g of C (B75/C25), 30 g of B: 30 g of C (B50/C50), and 15 g of B; 45 g of C (B25/C75)). Taguchi design supported by grey relational analysis was employed with an L9 orthogonal array. The Minitab 16 software was employed to analyze the Taguchi design. The result revealed an inconsistency in the powder mixture as the optimum state for individual mechanical properties, but the grey relational analysis (GRA) showed better mechanical properties with a powder mix of B50/C50, 500 Pa compaction pressure, and 900 °C sintering temperature. The obtained result further showed that the novel mix of these powders is a good and promising material for high-strength biomedical applications, having a contribution of 97.79% on hardness and 94.39% on compressive strength of HAp. The obtained experimental grey relational grade of 0.7958 is within the 95% confidence interval, according to confirmation analysis (CA). The optimum powder parameter was examined using X-ray diffraction (XRD), and its structure, size, and elemental makeup were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. The sample had a higher degree of crystallinity and mean crystallite size of 80.42% and 27.3 nm, respectively. The SEM images showed big, gritty grains that are not tightly packed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.