This work presents an optical fiber based sensor for fuel detection and adaptionan optical time domain Reflectometer (OTDR) as an analyzer. The sensing system consists of a portion of removal clad multimode fiber (MMF) as sensing part connected between a receive and launch fiber. The sensing part was prepared by removing 1 cm of the MMF cladding layer using chemical etching technique. Both launch and receive fibers are using single mode fiber (SMF) where OTDR is connected to the Launch Fibre while Receive Fiber has one end with air interface.The sensor response is based on optical return loss recorded from OTDR trace when sensing part in contact with fuel where in this work diesel and benzene were tested. OTDR measurement revealed that the return loss recorded from OTDR increases when etching time of the MMF increases. The highest return loss of 2.462 dB and 3.099 dB were recorded in diesel and benzene respectively with etching time of 20 minutes. The etching time was up to 25 minutes but it was found to cause the fiber core become too thin and at the end the fiber core can completely dissolve. Further enhancement of detection sensitivity was achieved by using two-point MMF sensing system.
A sensor head incorporating a diaphragm was designed and fabricated for water level measurement. It operates in the range of 0-70 cm column height, equivalent to a pressure in atmospheric pressure of 0-6.86 kPa. The fiber Bragg grating (FBG) was attached on the two types of diaphragm to detect the change in the hydrostatic pressure caused by water at different levels. The diaphragms performance by comparing the sensitivity in within the mentioned range. Optical spectrum analyzer (OSA) was used to record the shift in the Bragg wavelength at different water level. The sensitivity of water level measurement using a silicone rubber diaphragm found to be 9.81 pm/cm for 70 cm in water level, while the sensitivity for polymer plastic diaphragm found to be 2 pm/cm at the same level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.