The expression patterns of the recently discovered family of semaphorin genes suggests that they have widespread roles in embryonic development. Some seem to guide neuronal growth cones, but otherwise their functions are unknown. Semaphorin III is a membrane-associated secreted protein with a developmentally dynamic pattern of expression, including particular domains of the nervous system, the borders of developing bones, and the heart. In vitro, semaphorin III causes growth-cone collapse, and repels cutaneous sensory axons from the ventral spinal cord. Mutants in the Drosophila gene semaII, which encodes a related semaphorin, die after eclosion, but no responsible abnormality is evident. We have generated mice mutant in the semaIII gene by homologous recombination. Here we show that in the mutants, some sensory axons project into inappropriate regions of the spinal cord where semaIII is normally expressed. The cerebral cortex of homozygous mutant mice shows a paucity of neuropil and abnormally oriented neuronal processes, especially of the large pyramidal neurons. Certain embryonic bones and cartilaginous structures develop abnormally, with vertebral fusions and partial rib duplications. The few mice that survive more than a few days postnatally manifest pronounced and selective hypertrophy of the right ventricle of the heart and dilation of the right atrium. Thus, semaphorin III might serve as a signal that restrains growth in several developing organs.
During development, trigeminal nerve fibers navigate and establish their axonal projections to the developing tooth in a highly spatiotemporally controlled manner. By analyzing Sema3a and its receptor Npn1 knockout mouse embryos, we found that Sema3a regulates dental trigeminal axon navigation and patterning, as well as the timing of the first mandibular molar innervation,and that the effects of Sema3a appear to be mediated by Npn1 present in the axons. By performing tissue recombinant experiments and analyzing the effects of signaling molecules, we found that early oral and dental epithelia, which instruct tooth formation, and epithelial Wnt4 induce Sema3aexpression in the presumptive dental mesenchyme before the arrival of the first dental nerve fibers. Later, at the bud stage, epithelial Wnt4 and Tgfβ1 regulate Sema3a expression in the dental mesenchyme. In addition, Wnt4 stimulates mesenchymal expression of Msx1transcription factor, which is essential for tooth formation, and Tgfβ1 proliferation of the dental mesenchymal cells. Thus, epithelial-mesenchymal interactions control Sema3a expression and may coordinate axon navigation and patterning with tooth formation. Moreover, our results suggest that the odontogenic epithelium possesses the instructive information to control the formation of tooth nerve supply.
BackgroundAmyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects motor neurons (MNs). It was shown that human astrocytes with mutations in genes associated with ALS, like C9orf72 (C9) or SOD1, reduce survival of MNs. Astrocyte toxicity may be related to their dysfunction or the release of neurotoxic factors.MethodsWe used human induced pluripotent stem cell-derived astrocytes from ALS patients carrying C9orf72 mutations and non-affected donors. We utilized these cells to investigate astrocytic induced neuronal toxicity, changes in astrocyte transcription profile as well as changes in secretome profiles.FindingsWe report that C9-mutated astrocytes are toxic to MNs via soluble factors. The toxic effects of astrocytes are positively correlated with the length of astrocyte propagation in culture, consistent with the age-related nature of ALS. We show that C9-mutated astrocytes downregulate the secretion of several antioxidant proteins. In line with these findings, we show increased astrocytic oxidative stress and senescence. Importantly, media conditioned by C9-astrocytes increased oxidative stress in wild type MNs.InterpretationOur results suggest that dysfunction of C9-astrocytes leads to oxidative stress of themselves and MNs, which probably contributes to neurodegeneration. Our findings suggest that therapeutic strategies in familial ALS must not only target MNs but also focus on astrocytes to abrogate nervous system injury.
Axon degeneration and disruption of neuromuscular junctions (NMJs) are key events in amyotrophic lateral sclerosis (ALS) pathology. Although the disease's etiology is not fully understood, it is thought to involve a non–cell-autonomous mechanism and alterations in RNA metabolism. Here, we identified reduced levels of miR126-5p in presymptomatic ALS male mice models, and an increase in its targets: axon destabilizing Type 3 Semaphorins and their coreceptor Neuropilins. Using compartmentalized in vitro cocultures, we demonstrated that myocytes expressing diverse ALS-causing mutations promote axon degeneration and NMJ dysfunction, which were inhibited by applying Neuropilin1 blocking antibody. Finally, overexpressing miR126-5p is sufficient to transiently rescue axon degeneration and NMJ disruption both in vitro and in vivo. Thus, we demonstrate a novel mechanism underlying ALS pathology, in which alterations in miR126-5p facilitate a non–cell-autonomous mechanism of motor neuron degeneration in ALS.SIGNIFICANCE STATEMENT Despite some progress, currently no effective treatment is available for amyotrophic lateral sclerosis (ALS). We suggest a novel regulatory role for miR126-5p in ALS and demonstrate, for the first time, a mechanism by which alterations in miR126-5p contribute to axon degeneration and NMJ disruption observed in ALS. We show that miR126-5p is altered in ALS models and that it can modulate Sema3 and NRP protein expression. Furthermore, NRP1 elevations in motor neurons and muscle secretion of Sema3A contribute to axon degeneration and NMJ disruption in ALS. Finally, overexpressing miR126-5p is sufficient to transiently rescue NMJ disruption and axon degeneration both in vitro and in vivo.
Extensive neuronal cell death during development is believed to be due to a limiting supply of neurotrophic factors. In vitro studies suggest that axon guidance molecules directly regulate neuronal survival, raising the possibility that they play a direct role in neuronal cell death in vivo. However, guidance errors may also influence survival indirectly due to loss of target-derived neurotrophic support. The role of guidance molecules in neuronal death in vivo has thus been difficult to decipher. Semaphorin3A, a repulsive guidance cue for sensory neurons, can induce sensory neuron death in vitro. Null mice studies of the Semaphorin3A coreceptors showed that guidance activity is mediated by PlexinA4, but PlexinA3 partially compensates in PlexinA4 Ϫ/Ϫ mice. Here we demonstrate that both Plexins contribute to Sema3A-induced cell death in vitro, albeit in a different hierarchy. PlexinA3 is absolutely required, while PlexinA4 makes a smaller contribution to cell death. We found that PlexinA3 Ϫ/Ϫ mice, which, unlike PlexinA4 Ϫ/Ϫ mice, do not exhibit sensory axon patterning defects, show reduced neuronal apoptosis and an increased number of DRG neurons. Semaphorin3A involvement in neuronal death in vivo was demonstrated by a sensitization experiment using the proapoptotic effector Bax. Our results identify Plexins as mediators of Semaphorin-induced cell death in vitro, and provide the first evidence implicating Semaphorin/Plexin signaling in neuronal survival independent of its role in axon guidance. The results also support the idea that naturally occurring neuronal cell death reflects not only competition for target-derived trophic factors, but also the action of proapoptotic signaling via a Semaphorin/Plexin pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.