Objective This study aimed to conduct a systematic review of the current literature to determine estimates of vertical transmission of coronavirus disease 2019 based on early RNA detection of severe acute respiratory syndrome coronavirus 2 after birth from various neonatal or fetal sources and neonatal serology. Data Sources Eligible studies published until May 28, 2020, were retrieved from PubMed, EMBASE, medRxiv, and bioRxiv collection databases. Study Eligibility Criteria This systematic review included cohort studies, case series, and case reports of pregnant women who received a coronavirus disease 2019 diagnosis using severe acute respiratory syndrome coronavirus 2 viral RNA test and had reported data regarding the testing of neonates or fetuses for severe acute respiratory syndrome coronavirus 2 immediately after birth and within 48 hours of birth. A total of 30 eligible case reports describing 43 tested neonates and 38 cohort or case series studies describing 936 tested neonates were included. Study Appraisal and Synthesis Methods The methodological quality of all included studies was evaluated by a modified version of the Newcastle-Ottawa scale. Quantitative synthesis was performed on cohort or case series studies according to the neonatal biological specimen site to reach pooled proportions of vertical transmission. Results Our quantitative synthesis revealed that of 936 neonates from mothers with coronavirus disease 2019, 27 neonates had a positive result for severe acute respiratory syndrome coronavirus 2 viral RNA test using nasopharyngeal swab, indicating a pooled proportion of 3.2% (95% confidence interval, 2.2–4.3) for vertical transmission. Of note, the pooled proportion of severe acute respiratory syndrome coronavirus 2 positivity in neonates by nasopharyngeal swab in studies from China was 2.0% (8/397), which was similar to the pooled proportion of 2.7% (14/517) in studies from outside of China. Severe acute respiratory syndrome coronavirus 2 viral RNA testing in neonatal cord blood was positive in 2.9% of samples (1/34), 7.7% of placenta samples (2/26), 0% of amniotic fluid (0/51), 0% of urine samples (0/17), and 9.7% of fecal or rectal swabs (3/31). Neonatal serology was positive in 3 of 82 samples (3.7%) (based on the presence of immunoglobulin M). Conclusion Vertical transmission of severe acute respiratory syndrome coronavirus 2 is possible and seems to occur in a minority of cases of maternal coronavirus disease 2019 infection in the third trimester. The rates of infection are similar to those of other pathogens that cause congenital infections. However, given the paucity of early trimester data, no assessment can yet be made regarding the rates of vertical transmission in early pregnancy and potential risk for consequent fetal morbidity and mortality.
VD supplementation in VD-deficient women with PCOS significantly decreases the bioavailability of TGF-β1, which correlates with an improvement in some abnormal clinical parameters associated with PCOS. This is a novel mechanism that could explain the beneficial effects of VD supplementation in women with PCOS. These findings may support new treatment modalities for PCOS, such as the development of anti-TGF-β drugs.
Accumulating evidence from animal and human studies indicates a role for vitamin D in female reproductive physiology, and numerous clinical studies have suggested its potential benefit for various aspects of human reproduction. Anti-Müllerian hormone (AMH) is an ovarian biomarker that plays an important role in folliculogenesis. It is the most sensitive ovarian reserve marker and is widely used clinically in reproductive medicine. While initial studies have suggested that vitamin D may be associated with ovarian reserve markers, including AMH, evidence has been conflicting. Currently, there is considerable debate in the field whether vitamin D has the capacity to influence ovarian reserve, as indicated by the AMH level. The current systematic review aims to evaluate and summarize the available evidence regarding the relationship between vitamin D and AMH. In total, 18 observational studies and 6 interventional studies were included in this systematic review. Cross-sectional studies have reported largely discrepant findings regarding an association between serum vitamin D and AMH levels, which are likely due to the heterogeneity in study populations, as well as the apparently complex relationship that may exist between vitamin D and AMH. However, meta-analysis of interventional studies performed herein that examined the effects of vitamin D supplementation on serum AMH levels indicates a cause-effect relationship between vitamin D and AMH, the direction of which appears to depend on a woman’s ovulatory status. Serum AMH was significantly decreased following vitamin D supplementation in polycystic ovarian syndrome (PCOS) women (standardized mean difference (SMD) −0.53, 95% CI −0.91 to −0.15, p < 0.007), while it was significantly increased following vitamin D supplementation in ovulatory women without PCOS (SMD 0.49, 95% CI 0.17 to 0.80, p = 0.003). In conclusion, the results of this systematic review demonstrate that the relationship between vitamin D and AMH is a complex one, and large, randomized trials of vitamin D supplementation focusing on different vitamin D status ranges are necessary to gain more insight into the nature of this relationship and the potential benefit of vitamin D to female reproduction in general.
Introduction: Antimullerian hormone (AMH) strongly correlates with ovarian reserve and response to controlled ovarian stimulation. Emerging data suggests that serum AMH level may also predict ART outcomes. However, AMH is characteristically elevated in PCOS women and it is unknown whether it may predict live birth outcomes in this population. Methods: This was a retrospective cohort study of 184 PCOS women (Rotterdam criteria) who underwent their first fresh IVF/ICSI cycle. Women were divided into 3 groups according to the <25th (low), 25 to 75th (average), or > 75th (high) percentile of serum AMH concentration. Cycle stimulation parameters and reproductive outcomes were compared between groups. Results: Women in the low serum AMH group were older than those in the average or high AMH (p < 0.05), and required greater gonadotropin dose for stimulation compared to the high AMH group (p < 0.05). Women with high AMH had greater testosterone level compared to women in the low or average AMH groups. No differences were noted between groups in terms of maximal E2, oocytes retrieved and fertilization rate. However, low serum AMH women had significantly greater live birth rates (p < 0.05) and showed a trend towards greater clinical pregnancy rates compared to women in the average and high AMH groups (p = 0.09). The significant association of AMH with live birth rate remained after adjusting for age, BMI, day of transfer and number of embryos transferred. Conclusions: In PCOS women, elevated AMH concentrations are associated with hyperandrogenism and lower live birth rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.