A previous study in the rat (Pollard et al. 1990) established that caffeine, when administered during pregnancy, significantly inhibited the differentiation of the seminiferous cords and subsequent Leydig cell development in the interstitium. However, that study could not distinguish between the direct effects of caffeine and/or the intermediary secondary toxic effects of metabolites such as theophylline and theobromine. Because the fetus lacks the appropriate enzyme systems, clearance of toxic substances takes place via the placenta and maternal liver. Thus, a suitable in vitro system can effectively differentiate between primary and secondary drug effects. In the present study, 13-day-old fetal testis, at the stage of incipient differentiation, were cultured for 4 days in vitro in the presence of graded doses of caffeine, theophylline or theobromine. It was found that explants exposed to caffeine or theobromine differentiated normally, developing seminiferous cords made up of Sertoli and germ cells, soon followed by the differentiation of functionally active Leydig cells appearing in the newly formed interstitium. However, explants exposed to theophylline failed to develop seminiferous cords and, as a consequence, Leydig cells. In conclusion, insights obtained from different experimental methods, such as organ culture or whole organism studies, are not always identical. It may be prudent, therefore, to take into account that certain experimental techniques, despite providing valuable information, may require confirmation by other test methods in order to obtain an in-depth understanding of mechanisms of action involved.
The expression of cytokeratins (CKs) 8, 18 and 19 was analyzed in male and female rat gonads from the undifferentiated stage (12.5 days of gestation) until two weeks after birth by indirect immunofluorescence, using specific monoclonal antibodies anti-CK 8 (LE41), anti-CK 19 (LP2K) and anti-CK 18 (LE65 and RGE53). In the undifferentiated blastema, the somatic cells were stained for CK 8 and CK 19, whereas no detectable immunoreactivity for CK 18 was obtained. The same staining CK pattern was observed in ovaries, in the somatic cells of ovigerous cords and in primary follicles. The staining was progressively decreasing in growing follicles after one week after birth. At the onset of testicular differentiation, when the first Sertoli cells differentiate in the gonad of 13.5-day old male fetuses, positive staining for CK 18 became evident, in addition to CK 8 and CK 19 expression. In the following days, CK 8, CK 18 and CK 19 were detected in Sertoli cells in the differentiating seminiferous cords, but progressively the reactivity for CK 19 decreased and was no longer observed after 18.5-19.5 days of gestation. In all cases, CKs were found to be coexpressed with vimentin, and germ cells were negative for both vimentin and CKs. The results reported here show first, that CKs are expressed before sexual differentiation in gonadal blastema in which no epithelial organization is observed, and second, that there is a CK 18/CK 19 shift in expression during morphogenesis of the testis which is not observed in the differentiating ovary. Future studies will have to determine whether these differences in CK expression are due to epitope-masking phenomena or to the regulation of CK synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.