Heterologous polyclonal antibodies might represent an alternative to the use of convalescent plasma or monoclonal antibodies (mAbs) in coronavirus disease (COVID‐19) by targeting multiple antigen epitopes. However, heterologous antibodies trigger human natural xenogeneic antibody responses particularly directed against animal‐type carbohydrates, mainly the N‐glycolyl form of the neuraminic acid (Neu5Gc) and the α1,3‐galactose, potentially leading to serum sickness or allergy. Here, we immunized cytidine monophosphate‐N‐acetylneuraminic acid hydroxylase and α1,3‐galactosyl‐transferase (GGTA1) double KO pigs with the Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) spike receptor binding domain to produce glyco‐humanized polyclonal neutralizing antibodies lacking Neu5Gc and α1,3‐galactose epitopes. Animals rapidly developed a hyperimmune response with anti‐SARS‐CoV‐2 end‐titers binding dilutions over one to a million and end‐titers neutralizing dilutions of 1:10 000. The IgG fraction purified and formulated following clinical Good Manufacturing Practices, named XAV‐19, neutralized spike/angiotensin converting enzyme‐2 interaction at a concentration <1 μg/mL, and inhibited infection of human cells by SARS‐CoV‐2 in cytopathic assays. We also found that pig GH‐pAb Fc domains fail to interact with human Fc receptors, thereby avoiding macrophage‐dependent exacerbated inflammatory responses and a possible antibody‐dependent enhancement. These data and the accumulating safety advantages of using GH‐pAbs in humans warrant clinical assessment of XAV‐19 against COVID‐19.
Perfusion of convalescent plasma (CP) has demonstrated a potential to improve the pneumonia induced by SARS-CoV-2, but procurement and standardization of CP are barriers to its wide usage. Heterologous polyclonal antibodies of animal origin have been used to fight against infectious agents and are a possible alternative to the use of CP in SARS-CoV-2 disease. However, heterologous polyclonal antibodies trigger human natural xenogeneic antibody responses particularly directed against animal-type carbohydrate epitopes, mainly the N-glycolyl form of the neuraminic acid (Neu5Gc) and the Gal alpha1,3-galactose (a-Gal), ultimately forming immune complexes and potentially leading to serum sickness or allergy. To circumvent these drawbacks, we engineered animals lacking the cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) and alpha1,3-galactosyltransferase (GGTA1) enzymes to produce glyco-humanized polyclonal antibodies (GH-pAb) lacking Neu5Gc and a-Gal epitopes. We also found that these IgG Fc domains fail to interact with human Fc receptors and thereby should confer the safety advantage to avoiding macrophage dependent exacerbated inflammatory responses or elicit antibody-dependent enhancement (ADE), two drawbacks possibly associated with antibody responses against SARS-CoV-2. Therefore, we immunized CMAH/GGTA1 double knockout (DKO) pigs with the SARS-CoV-2 spike receptor binding domain (RBD) domain to elicit neutralizing antibodies. Animals rapidly developed hyperimmune sera with end-titers binding dilutions over one to a million and end-titers neutralizing dilutions of 1:10,000. The IgG fraction purified and formulated following clinical Good Manufacturing Practices, named XAV-19, neutralized Spike/ACE-2 interaction at a concentration < 1microgram/mL and inhibited infection of human cells by SARS-CoV-2 in cytopathic assays. These data and the accumulating safety advantages of using glyco-humanized swine antibodies in humans warrant clinical assessment of XAV-19 to fight against COVID-19.
Objective: We assessed the pharmacokinetics and safety of XAV-19, a swine glyco-humanized polyclonal antibody against SARS-CoV-2, in COVID-19-related moderate pneumonia. To evaluate the optimal dose and safety of XAV-19 during this first administration to patients with COVID-19-related moderate pneumonia. Methods : In this phase 2a trial, adults with COVID-19-related moderate pneumonia of ≤10 days duration were randomized to infusion of XAV-19 0.5mg/kg at day 1 and day 5 (group 1), 2mg/kg at day 1 and day 5 (group 2), 2mg/kg at day 1 (group 3) or placebo. Results : Eighteen patients (n=7 for group 1, n=1 for group 2, n=5 for group 3, and n=5 for placebo) were enrolled. Baseline characteristics were similar across groups, XAV-19 serum concentrations (μg/mL, median, range) at C max and at day 8 were 9.1 (5.2-18.1) and 6.4 (2.8-11.9), 71.5 and 47.2, and 50.4 (29.1-55.0) and 20.3 (12.0-22.7) for groups 1, 2 and 3, respectively (p=0.012). Terminal half-life (median, range) was estimated at 11.4 (5.5-13.9) days for 2 mg/kg of XAV-19 at day 1. Serum XAV-19 concentrations were above the target concentration of 10 μg/mL (tow fold the in vitro 100% inhibitory concentration [IC 100 ]) from the end of perfusion to more than 8 days for XAV-19 2 mg/kg at day 1. No hypersensitivity or infusion-related reactions were reported during treatment, there was no discontinuation for adverse events and no serious adverse events related to study drug. Conclusions : Single intravenous dose of 2mg/kg of XAV-19 demonstrated high serum concentrations, predictive of potent durable neutralizing activity with good tolerability. Trial registration: ClinicalTrials.gov Identifier: NCT04453384
Amino acid substitutions and deletions in the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants can reduce the effectiveness of monoclonal antibodies (mAbs). In contrast, heterologous polyclonal antibodies raised against S protein, through the recognition of multiple target epitopes, have the potential to maintain neutralization capacities. XAV-19 is a swine glyco-humanized polyclonal neutralizing antibody raised against the receptor binding domain (RBD) of the Wuhan-Hu-1 Spike protein of SARS-CoV-2. XAV-19 target epitopes were found distributed all over the RBD and particularly cover the receptor binding motives (RBMs), in direct contact sites with the angiotensin converting enzyme-2 (ACE-2). Therefore, in Spike/ACE-2 interaction assays, XAV-19 showed potent neutralization capacities of the original Wuhan Spike and of the United Kingdom (Alpha/B.1.1.7) and South African (Beta/B.1.351) variants. These results were confirmed by cytopathogenic assays using Vero E6 and live virus variants including the Brazil (Gamma/P.1) and the Indian (Delta/B.1.617.2) variants. In a selective pressure study on Vero E6 cells conducted over 1 month, no mutation was associated with the addition of increasing doses of XAV-19. The potential to reduce viral load in lungs was confirmed in a human ACE-2 transduced mouse model. XAV-19 is currently evaluated in patients hospitalized for COVID-19-induced moderate pneumonia in phase 2a-2b (NCT04453384) where safety was already demonstrated and in an ongoing 2/3 trial (NCT04928430) to evaluate the efficacy and safety of XAV-19 in patients with moderate-to-severe COVID-19. Owing to its polyclonal nature and its glyco-humanization, XAV-19 may provide a novel safe and effective therapeutic tool to mitigate the severity of coronavirus disease 2019 (COVID-19) including the different variants of concern identified so far.
Background Early inhibition of entry and replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a very promising therapeutic approach. Polyclonal neutralizing antibodies offers many advantages such as providing immediate immunity, consequently blunting an early pro-inflammatory pathogenic endogenous antibody response and lack of drug-drug interactions. By providing immediate immunity and inhibiting entry into cells, neutralizing antibody treatment is of interest for patient with COVID-19-induced moderate pneumonia. Convalescent plasma to treat infected patients is therefore a relevant therapeutic option currently under assessment (CORIMUNO-PLASM NCT04324047). However, the difficulties of collecting plasma on the long term are not adapted to a broad use across all populations. New polyclonal humanized anti-SARS-CoV2 antibodies (XAV-19) developed by Xenothera and administered intravenous. XAV-19 is a heterologous swine glyco-humanized polyclonal antibody (GH-pAb) raised against the spike protein of SARS-CoV-2, blocking infection of ACE-2-positive human cells with SARS-CoV-2. Methods Pharmacokinetic and pharmacodynamic studies have been performed in preclinical models including primates. A first human study with another fully representative GH-pAb from Xenothera is ongoing in recipients of a kidney graft. These studies indicated that 5 consecutive administrations of GH-pAbs can be safely performed in humans. The objectives of this 2-step phase 2 randomized double-blinded, placebo-controlled study are to define the safety and the optimal XAV-19 dose to administrate to patients with SARS-CoV-2 induced moderate pneumonia, and to assess the clinical benefits of a selected dose of XAV-19 in this population. Discussion This study will determine the clinical benefits of XAV-19 when administered to patients with SARS-CoV-2-induced moderate pneumonia. As a prerequisite, a first step of the study will define the safety and the dose of XAV-19 to be used. Such treatment might become a new therapeutic option to provide an effective treatment for COVID-19 patients (possibly in combination with anti-viral and immunotherapies). Further studies could later evaluate such passive immunotherapy as a potential post-exposure prophylaxis. Trial registration ClinicalTrials.gov NCT04453384, registered on 1 July 2020, and EUDRACT 2020-002574-27, registered 6 June 2020.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.