This aim of this work was to identify the odorant compounds responsible for the typical sensory descriptors attributed to freshly distilled Cognac spirits, not matured in barrels. Panelists were first selected and trained for gas chromatography-olfactometry. Among the 150 volatile compounds identified by gas chromatography-mass spectrometry analysis, only 34 are mainly responsible for the odors detected in the spirits. The "butter" descriptor is explained by the presence of diacetyl, the "hay" descriptor by nerolidol, the "grass" descriptor mainly by Z-3-hexen-1-ol, but also by other compounds, the "pear" and "banana" descriptors by 2- and 3-methylbutyl acetates, the "rose" descriptor by 2-phenylethyl acetate, and the "lime tree" descriptor by linalool. This study demonstrated that many odorant molecules are already present in freshly distilled Cognac, thereby giving the spirit its specific aroma.
Gas chromatography coupled with mass spectrometry (GC-MS) using both electron impact and chemical ionization detection modes led to the determination of the volatile composition of two samples of freshly distilled Cognac and two samples of freshly distilled Calvados. A total of 169 volatile compounds were directly identified in dichloromethane extracts obtained by liquid-liquid extraction. Trace compounds present in both spirits were characterized with the help of preparative separations. In a first step, groups of compounds were separated by preparative GC, and the fractions were analyzed on a polar stationary phase by GC-MS. In a second step, silica gel fractionation was used to separate them by polarity. In this study, 331 compounds, of which 162 can be considered as trace compounds, were characterized in both freshly distilled Cognac and Calvados. Of these, 39 are common to both spirits; 30 are specific to Cognac with numerous hexenyl esters and norisoprenoidic derivatives, whereas 93 are specific to Calvados with compounds such as unsaturated alcohols, phenolic derivatives, and unsaturated aldehydes.
Mid-infrared spectroscopy was applied to the analysis and discrimination of Cognacs and other distilled drinks (Armagnacs, whiskies, brandies, bourbons, rums, and counterfeit products). Strong correlations were found between dry extract spectra, polyphenolic dry extract spectra, and the total polyphenol concentration of samples, notably of Cognacs. Principal component analysis applied to spectral data made it possible to emphasize the importance of dry extract data when a distinction is made between Cognacs and Armagnacs, whiskies, bourbons, and rums, and of polyphenol concentration when Cognacs, brandies, and counterfeit products are separated. Ninety-six percent of samples in the test set were correctly assigned to Cognacs and non-Cognacs by partial least-squares discriminant analysis.
<p style="text-align: justify;">This study investigates the influence of different levels of wood heat treatment on the quality of a Cognac spirit using a pilot barrel model. The pilot barrels were composed of a stainless steel cylinder closed at both ends by a piece of stave. The aim of the study was to analyze the impact of wood heat treatment on Cognac in both analytical and sensory terms and to confirm the validity of the pilot barrel model. The findings give a relatively wide view of the influence on the composition of Cognac of new wood heated at different temperatures. Heating gave notes of «vanilla» and «toasted» to the spirit while excessive heating led to lower quality with the appearance of «fungus» and «dusty». The good quality of the spirits obtained validates the pilot barrel as a model for the extraction of wood compounds by spirit.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.