Background GMZ2 is a recombinant malaria vaccine inducing immune responses against Plasmodium falciparum (Pf) merozoite surface protein-3 and glutamate-rich protein. We used standardized controlled human malaria infection (CHMI) to assess the efficacy of this asexual blood-stage vaccine. Methods We vaccinated 50 healthy, adult volunteers with lifelong exposure to Pf 3 times, at 4-week intervals, with 30 or 100 µg GMZ2 formulated in CAF01, a liposome-based adjuvant; 100 µg GMZ2, formulated in Alhydrogel; or a control vaccine (Verorab). Approximately 13 weeks after the last vaccination, 35/50 volunteers underwent CHMI by direct venous inoculation of 3200 Pf sporozoites (Sanaria® PfSPZ Challenge). Results Adverse events were similarly distributed between GMZ2 and control vaccinees. Baseline-corrected anti-GMZ2 antibody concentrations 4 weeks after the last vaccination were higher in all 3 GMZ2-vaccinated arms, compared to the control group. All GMZ2 formulations induced similar antibody levels. CHMI resulted in 29/34 (85%) volunteers with Pf parasitemia and 15/34 (44%) with malaria (parasitemia and symptoms). The proportion of participants with malaria (2/5 control, 6/10 GMZ2-Alhydrogel, 2/8 30 µg GMZ2-CAF01, and 5/11 100 µg GMZ2-CAF01) and the time it took them to develop malaria were similar in all groups. Baseline, vaccine-specific antibody concentrations were associated with protection against malaria. Conclusions GMZ2 is well tolerated and immunogenic in lifelong–Pf-exposed adults from Gabon, with similar antibody responses regardless of formulation. CHMI showed no protective effect of prior vaccination with GMZ2, although baseline, vaccine-specific antibody concentrations were associated with protection. CHMI with the PfSPZ Challenge is a potent new tool to validate asexual, blood-stage malaria vaccines in Africa. Clinical Trials Registration Pan-African Clinical Trials: PACTR201503001038304
g Protection from infections in early life relies extensively on innate immunity, but it is unknown whether and how maternal infections modulate infants' innate immune responses, thereby altering susceptibility to infections. Plasmodium falciparum causes pregnancy-associated malaria (PAM), and epidemiological studies have shown that PAM enhances infants' susceptibility to infection with P. falciparum. We investigated how PAM-mediated exposures in utero affect innate immune responses and their relationship with infection in infancy. In a prospective study of mothers and their babies in Benin, we investigated changes in Toll-like receptor (TLR)-mediated cytokine responses related to P. falciparum infections. Whole-blood samples from 134 infants at birth and at 3, 6, and 12 months of age were stimulated with agonists specific for TLR3, TLR4, TLR7/8, and TLR9. TLRmediated interleukin 6 (IL-6) and IL-10 production was robust at birth and then stabilized, whereas tumor necrosis factor alpha (TNF-␣) and gamma interferon (IFN-␥) responses were weak at birth and then increased. In multivariate analyses, maternal P. falciparum infections at delivery were associated with significantly higher TLR3-mediated IL-6 and IL-10 responses in the first 3 months of life (P < 0.05) and with significantly higher TLR3-, TLR7/8-, and TLR9-mediated TNF-␣ responses between 6 and 12 months of age (P < 0.05). Prospective analyses showed that higher TLR3-and TLR7/8-mediated IL-10 responses at birth were associated with a significantly higher risk of P. falciparum infection in infancy (P < 0.05). Neonatal and infant intracellular TLRmediated cytokine responses are conditioned by in utero exposure through PAM late in pregnancy. Enhanced TLR-mediated IL-10 responses at birth are associated with an increased risk of P. falciparum infection, suggesting a compromised ability to combat infection in early life.
Background: The role of the immune system in insulin resistance associated with type 2 diabetes has been suggested. Objectives:We assessed the profile of Th1/Th2 cytokines along with the frequencies of immune cells in insulin-treated type 2 diabetic patients (T2DP). Methods: 45 T2D patients and 43 age-matched healthy subjects were selected. Serum concentrations of T-helper type 1 (Th1) and Th2 cytokines and the frequencies of innate and adaptive immunity cells were assessed. Results: T2DP were hyperglycemic and showed high level of insulin, normal levels of triglycerides and total-cholesterol and without any change in HDL-cholesterol.Compared to healthy subjects, T2DP exhibited significant decreased frequencies of neutrophils, without any change in monocytes, eosinophils and natural killer cells. The percentages of total lymphocytes (CD3+) and CD8+-T-cells decreased whereas those of regulatory T-cells increased without any change in CD4+ T-cells in T2DP. Interestingly, the frequencies of effector CD4+-T and B-cells increased in T2DP. Serum concentrations of IL-2, IFN-γ and IL-4 decreased while IL-10 significantly enhanced in T2DP, suggesting a differentiation of CD4+T helper cells towards IL-10-producing-Teff-cells in these patients. Conclusion: Insulin-treated type 2 diabetes is associated with anti-inflammatory profile consistent with differentiation of CD4+-Th-cells towards IL-10-producing-Teff-cells, concomitant with increased frequencies of Treg and B-cells, and this may probably offer prevention against certain infections or autoimmune/inflammatory diseases.
Background Helminths can modulate the host immune response to Plasmodium falciparum and can therefore affect the risk of clinical malaria. We assessed here the effect of helminth infections on both the immunogenicity and efficacy of the GMZ2 malaria vaccine candidate, a recombinant protein consisting of conserved domains of GLURP and MSP3, two asexual blood-stage antigens of P. falciparum. Controlled human malaria infection (CHMI) was used to assess the efficacy of the vaccine. Methodology In a randomized, double-blind Phase I clinical trial, fifty, healthy, lifelong malaria-exposed adult volunteers received three doses of GMZ2 adjuvanted with either Cationic Adjuvant Formulation (CAF) 01 or Alhydrogel, or a control vaccine (Rabies) on days (D) 0, D28 and D56, followed by direct venous inoculation (DVI) of 3,200 P. falciparum sporozoites (PfSPZ Challenge) approximately 13 weeks after last vaccination to assess vaccine efficacy. Participants were followed-up on a daily basis with clinical examinations and thick blood smears to monitor P. falciparum parasitemia for 35 days. Malaria was defined as the presence of P. falciparum parasites in the blood associated with at least one symptom that can be associated to malaria over 35 days following DVI of PfSPZ Challenge. Soil-transmitted helminth (STH) infection was assessed by microscopy and by polymerase chain reaction (PCR) on stool, and Schistosoma infection was assessed by microscopy on urine. Participants were considered as infected if positive for any helminth either by PCR and/or microscopy at D0 and/or at D84 (Helm+) and were classified as mono-infection or co-infection. Total vaccine-specific IgG concentrations assessed on D84 were analysed as immunogenicity outcome. Main findings The helminth in mono-infection, particularly Schistosoma haematobium and STH were significantly associated with earlier malaria episodes following CHMI, while no association was found in case of coinfection. In further analyses, the anti-GMZ2 IgG concentration on D84 was significantly higher in the S. haematobium-infected and significantly lower in the Strongyloides stercoralis-infected groups, compared to helminth-negative volunteers. Interesting, in the absence of helminth infection, a high anti-GMZ2 IgG concentration on D84 was significantly associated with protection against malaria. Conclusions Our results suggest that helminth infection may reduce naturally acquired and vaccine-induced protection against malaria. Vaccine-specific antibody concentrations on D84 may be associated with protection in participants with no helminth infection. These results suggest that helminth infection affect malaria vaccine immunogenicity and efficacy in helminth endemic countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.