Despite the Pt-catalyzed alkaline hydrogen evolution reaction (HER) progressing via oxophilic metal-hydroxide surface hybridization, maximizing Pt reactivity alongside operational stability is still unsatisfactory due to the lack of well-designed and optimized interface structures. Producing atomically flat two-dimensional Pt nanodendrites (2D-PtNDs) through our 2D nanospace-confined synthesis strategy, this study tackles the insufficient interfacial contact effect during HER catalysis by realizing an area-maximized and firmly bound lateral heterointerface with NiFe-layered double hydroxide (LDH). The well-oriented {110} crystal surface exposure of Pt promotes electronic interplay that bestows strong LDH binding. The charge-relocated interfacial bond in 2D-PtND/LDH accelerates the hydrogen generation steps and achieves nearly the highest reported Pt mass activity enhancement (∼11.2 times greater than 20 wt % Pt/C) and significantly improved long-term operational stability. This work uncovers the importance of the shape and facet of Pt to create heterointerfaces that provide catalytic synergy for efficient hydrogen production.
With the advent of foldable electronics, it is necessary to develop a technology ensuring foldability when the circuit lines are placed on the topmost substrate rather than in the neutral plane used in the present industry. Considering the potential technological impacts, conversion of the conventional printed circuit boards to foldable ones is most desirable to achieve the topmost circuitry. This study realizes this unconventional conversion concept by coating an ultrathin anisotropic conductive film (UACF) on a printed metal circuit board. This study presents rapid large-area synthesis of hydrogenated amorphous carbon (a-C:H) thin films and their use as the UACF. Since the synthesized a-C:H thin film has electrical transparency, the metal/a-C:H hybrid board reflects the complexity of the underlying metal circuit board. The a-C:H thin film electrically connects the cracked area of the metal line; thus, the hybrid circuit board is foldable without resistance change during repeated folding cycles. The metal/UACF hybrid circuit board can be applied to the fabrication of various foldable electronic devices.
We have achieved heteroepitaxial stacking of a van der Waals (vdW) monolayer metal, 1T'-WTe 2 , and a semiconductor, 2H-WSe 2 , in which a distinctively low contact barrier was established across a clean epitaxial vdW gap. Our epitaxial 1T'-WTe 2 films were identified as a semimetal by low temperature transport and showed the robust breakdown current density of 5.0 × 10 7 A/cm 2 . In comparison with a series of planar metal contacts, our epitaxial vdW contact was identified to possess intrinsic Schottky barrier heights below 100 meV for both electron and hole injections, contributing to superior ambipolar field-effect transistor (FET) characteristics, i.e., higher FET mobilities and higher on−off current ratios at smaller threshold gate voltages. We discuss our observations around the critical roles of the epitaxial vdW heterointerfaces, such as incommensurate stacking sequences and absence of extrinsic interfacial defects that are inaccessible by other contact methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.