Herein, a simple wet-chemical pathway has been demonstrated for the synthesis of silver nanoparticle conjugated reduced graphene oxide nanosheets where dimethylformamide (DMF) is judiciously employed as an efficient reducing agent. Altogether, DMF reduces both silver nitrate (AgNO3) and graphene oxide (GO) in the reaction mixture. Additionally, the presence of polyvinylpyrolidone (PVP) assists the nanophasic growth and homogeneous distribution of the plasmonic nanoparticle Ag(0). Reduction of graphene oxide and the presence of aggregated Ag NPs on reduced graphene oxide (rGO) nanosheets are confirmed from various spectroscopic techniques. Finally, the composite material has been exploited as an intriguing platform for surface enhanced Raman scattering (SERS) based selective detection of uranyl (UO2(2+)) ion. The limit of detection has been achieved to be as low as 10 nM. Here the normal Raman spectral (NRS) band of uranyl acetate (UAc) at 838 cm(-1) shifts to 714 and 730 cm(-1) as SERS bands for pH 5.0 and 12.0, respectively. This distinguished Raman shift of the symmetric stretching mode for UO2(2+) ion is indicative of pronounced charge transfer (CT) effect. This CT effect even supports the higher sensitivity of the protocol toward UO2(2+) over other tested oxo-ions. It is anticipated that rGO nanosheets furnish a convenient compartment to favor the interaction between Ag NPs and UO2(2+) ion through proximity induced adsorption even at low concentration.
The design of efficient, low-cost, and stable electrocatalyst systems toward energy conversion is highly demanding for their practical use. Large scale electrolytic water splitting is considered as a promising strategy for clean and sustainable energy production. Herein, we report a self-supported NiFe layered double hydroxide (LDH)-NiSe electrocatalyst by stepwise surface-redox-etching of Ni foam (NF) through a hydrothermal process. The as-prepared NiFe LDH-NiSe/NF catalyst exhibits far better performance in alkaline water oxidation, proton reduction, and overall water splitting compared to NiSe/NF or NiFe LDH/NF. Only 240 mV overpotential is required to obtain a water oxidation current density of 100 mA cm, whereas the same for the hydrogen evolution reaction is 276 mV in 1.0 M KOH. The synergistic effect from NiSe and NiFe LDH leads to the evolution of a highly efficient catalyst system for water splitting by achieving 10 mA cm current density at only 1.53 V in a two-electrode alkaline electrolyzer. In addition, the designed electrode produces stable performance for a long time even at higher current density to demonstrate its robustness and prospective as a real-life energy conversion system.
Thiourea (TU), a commercially available laboratory chemical, has been discovered to introduce metallogelation when reacted with copper(II) chloride in aqueous medium. The chemistry involves the reduction of Cu(II) to Cu(I) with concomitant oxidation of thiourea to dithiobisformamidinium dichloride. The gel formation is triggered through metal-ligand complexation, i.e., Cu(I)-TU coordination and extensive hydrogen bonding interactions involving thiourea, the disulfide product, water, and chloride ions. Entangled network morphology of the gel selectively develops in water, maybe for its superior hydrogen-bonding ability, as accounted from Kamlet-Taft solvent parameters. Complete and systematic chemical analyses demonstrate the importance of both Cu(I) and chloride ions as the key ingredients in the metal-organic coordination gel framework. The gel is highly fluorescent. Again, exclusive presence of Cu(I) metal centers in the gel structure makes the gel redox-responsive and therefore it shows reversible gel-sol phase transition. However, the reversibility does not cause any morphological change in the gel phase. The gel practically exhibits its multiresponsive nature and therefore the influences of different probable interfering parameters (pH, selective metal ions and anions, selective complexing agents, etc.) have been studied mechanistically and the results might be promising for different applications. Finally, the gel material shows a highly selective visual response to a commonly used nitroexplosive, picric acid among a set of 19 congeners and the preferred selectivity has been mechanistically interpreted with density functional theory-based calculations.
In this work, the syntheses of Cu2O as well as Cu(0) nanoparticle catalysts are presented. Copper acetate monohydrate produced two distinctly different catalyst particles with varying concentrations of hydrazine hydrate at room temperature without using any surfactant or support. Then both of them were employed separately for 4-nitrophenol reduction in aqueous solution in the presence of sodium borohydride at room temperature. To our surprise, it was noticed that the catalytic activity of Cu2O was much higher than that of the metal Cu(0) nanoparticles. We have confirmed the reason for the exceptionally high catalytic activity of cuprous oxide nanoparticles over other noble metal nanoparticles for 4-nitrophenol reduction. A plausible mechanism has been reported. The unusual activity of Cu2O nanoparticles in the reduction reaction has been observed because of the in situ generated ternary nanocomposite, Cu2O-Cu-CuO, which rapidly relays electrons and acts as a better catalyst. In this ternary composite, highly active in situ generated Cu(0) is proved to be responsible for the hydride transfer reaction. The mechanism of 4-nitrophenol reduction has been established from supporting TEM studies. To further support our proposition, we have prepared a compositionally similar Cu2O-Cu-CuO nanocomposite using Cu2O and sodium borohydride which however displayed lower rate of reduction than that of the in situ produced ternary nanocomposite. The evolution of isolated Cu(0) nanoparticles for 4-nitrophenol reduction from Cu2O under surfactant-free condition has also been taken into consideration. The synthetic procedures of cuprous oxide as well as its catalytic activity in the reduction of 4-nitrophenol are very convenient, fast, cost-effective, and easily operable in aqueous medium and were followed spectrophotometrically. Additionally, the Cu2O-catalyzed 4-nitrophenol reduction methodology was extended further to the reduction of electronically diverse nitroarenes. This concise catalytic process in aqueous medium at room temperature revealed an unprecedented catalytic performance which would draw attention across the whole research community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.