The potential toxicity of nanoparticles is addressed by utilizing a putative attractive model in developmental biology and genetics: the zebrafish (Danio rerio). Transparent zebrafish embryos, possessing a high degree of homology to the human genome, offer an economically feasible, medium-throughput screening platform for noninvasive real-time assessments of toxicity. Using colloidal silver (cAg) and gold nanoparticles (cAu) in a panoply of sizes (3, 10, 50, and 100 nm) and a semiquantitative scoring system, it is found that cAg produces almost 100% mortality at 120 h post-fertilization, while cAu produces less than 3% mortality at the same time point. Furthermore, while cAu induces minimal sublethal toxic effects, cAg treatments generate a variety of embryonic morphological malformations. Both cAg and cAu are taken up by the embryos and control experiments, suggesting that cAg toxicity is caused by the nanoparticles themselves or Ag(+) that is formed during in vivo nanoparticle destabilization. Although cAg toxicity is slightly size dependent at certain concentrations and time points, the most striking result is that parallel sizes of cAg and cAu induce significantly different toxic profiles, with the former being toxic and the latter being inert in all exposed sizes. Therefore, it is proposed that nanoparticle chemistry is as, if not more, important than specific nanosizes at inducing toxicity in vivo. Ultimately such assessments using the zebrafish embryo model should lead to the identification of nanomaterial characteristics that afford minimal or no toxicity and guide more rational designs of materials on the nanoscale.
Exposure of humans and other organisms to nanomaterials is increasing exponentially. It is important, but difficult, to predict the biological consequences of these exposures. We hypothesized that the unique chemical properties that make nanoparticles useful might also be the key in predicting their biological impact. To investigate this, we chose titanium dioxide nanoparticles (TiO(2)NPs) and developing zebrafish embryos as model systems. TiO(2)NPs absorb photons to generate electron-hole pairs that react with water and oxygen to form cytotoxic reactive oxygen species (ROS). Here, we show that the exposure of zebrafish embryos to TiO(2)NPs produces malformation and death, but only if the fish are also illuminated. TiO(2)NPs are taken up into the developing fish, but the egg chorion is a barrier to uptake until the embryos hatch. Chemical probes and a transgenic reporter line confirm photo-dependent production of ROS in vivo, and the addition of an ROS scavenger rescues fish embryos from toxicity. To our knowledge, this is the first study to show a photo-dependent toxic response in a whole organism from exposure to TiO(2)NPs. Of further significance, our study highlights the relationship between the property of the material that makes it useful and the biological effect that is produced. This concept should serve as a guide for future nanotoxicological studies aiming to identify potential hazardous effects on organisms.
Titanium dioxide nanoparticle (TiO2NP) suspension stability can be altered by adsorption of dissolved organic matter (DOM). This is expected to impact their environmental fate and bioavailability. To date, the influence of DOM on the toxicity of TiO2NPs to aquatic vertebrates has not been reported. We examined the impact of Suwannee River humic acid (HA) on the toxicity of TiO2NPs to developing zebrafish (Danio rerio) in the dark and under simulated sunlight illumination. Adsorption of HA increased suspension stability and decreased TiO2NP exposure. TiO2NPs were more toxic in the presence of HA. In the absence of simulated sunlight, a small but significant increase in lethality was observed in fish exposed to TiO2NPs in the presence of HA. Under simulated sunlight illumination, photocatalytic degradation of HA reduced suspension stability. Despite the lower concentrations of Ti associated with fish in the treatments containing HA, under simulated sunlight illumination, median lethal concentrations were lower and oxidative DNA damage was elevated relative to fish exposed to TiO2NPs in the absence of HA. This study demonstrates the importance of considering environmental factors (i.e., exposure to sunlight, adsorption of DOM) when assessing the potential risks posed by engineered nanomaterials in the environment.
Photoactivation of titanium dioxide nanoparticles (TiO2NPs) can produce reactive oxygen species (ROS). Over time, this has the potential to produce cumulative cellular damage. To test this, we exposed zebrafish (Danio rerio) to two commercial TiO2NP preparations at concentrations ranging from 0.01 to 10,000 ng/mL over a 23 day period spanning embryogenesis, larval development, and juvenile metamorphosis. Fish were illuminated with a lamp that mimics solar irradiation. TiO2NP exposure produced significant mortality at 1 ng/mL. Toxicity included stunted growth, delayed metamorphosis, malformations, organ pathology, and DNA damage. TiO2NPs were found in the gills and gut and elsewhere. The two preparations differed in nominal particle diameter (12.1 ± 3.7 and 23.3 ± 9.8 nm) but produced aggregates in the 1 μm range. Both were taken up in a dose-dependent manner. Illuminated particles produced a time- and dose-dependent increase in 8-hydroxy-2'-deoxyguanosine DNA adducts consistent with cumulative ROS damage. Zebrafish take up TiO2NPs from the aqueous environment even at low ng/mL concentrations, and these particles when illuminated in the violet-near UV range produce cumulative toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.