The growth rate of urban areas in the north of Bandar Lampung has caused the extraction of groundwater resources through deep well pumping to increase. Therefore, it is necessary to study the impact of pumping to prevent groundwater depletion. This study performs numerical simulation modeling to identify the impact of deep well pumping on changes in groundwater levels in three sub-districts north of Bandar Lampung city. Modeling is done using MODFLOW-6 and ModelMuse as a graphical user interface (GUI). The simulation method uses steady-state and transient models with four stress periods in 2000, 2010, 2020, and 2030. A total of 30 data wells are used for model setup, and 15 of them as observation and validation points. The simulation results show that hydraulic head changes occur at depths of 10 m to more than 40 m. Drawdown and groundwater head changes are concentrated at deep well points with a radius of up to 1 km. The model also successfully identified a decrease in groundwater level to more than 8 m in the deepest well area DW1. Thus, it is necessary to take action that can overcome the impact of changes in groundwater level due to pumping from deep wells. Furthermore, groundwater storage engineering can be one solution by utilizing rainwater harvesting technology to recharge the groundwater aquifer system.
The waste management system of the Integrated Waste Management Site of the Lampung University is considered quite effective in handling the university organic waste, besides that the university also gets commercial benefits. This study analyzes the chemical waste management system at the Integrated Waste Management Site of the Lampung University and its potential in reducing university chemical waste independently. The type of research carried out was using descriptive research and use a qualitative approach by conducting observational studies and in-depth interviews. Waste management activities at the Integrated Waste Management Site of the Lampung University include waste collection, sorting and waste processing activities. One of the programs in the waste management process at the Integrated Waste Management Site of the Lampung University is known as the Unila Waste Bank.
The identification of shallow groundwater aquifers is demanded to sustain the balance of utilization in agriculture and anticipate frictions that can occur due to the overlapping usage of groundwater resources. This study is aimed to identify the potential of groundwater resources based on the thickness and depth of the groundwater aquifer. Geoelectric resistivity methods have done with vertical electrical sounding (VES) and horizontal profiling techniques (2D mapping). The VES data acquisition was carried out with a Schlumberger array while 2D mapping by alpha Wenner array. Inversion results of vertical electrical sounding (VES) show that groundwater resistivity values in sedimentary rocks ranged from 1 to 100 ?m and in igneous rocks between 0.5 - 150 ?m. The results of 2D Resistivity Mapping also show that shallow aquifer depth ranged from 1 to 5 m with a thickness ranged from 15 m to more than 70 m. Meanwhile, bedrock depth ranged from 20 to 150 m with a pattern deeper to the west. Furthermore, the potential of groundwater aquifers in the development of irrigation wells for agriculture should be carried out in the western part of the study area. Keywords: Groundwater, Shallow Aquifer, Rock Resistivity, Irrigation Well, Geo-Electrical Sounding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.