This present work is about simulating and analysing a Vertical Cavity Surface Emitting Laser (VCSEL) structure used in optical fibre communication systems. In this paper a VCSEL structure made of seven Quantum Wells of Indium Gallium Arsenide Phosphide (InGaAsP) emitting at 1550 nm is simulated. The device is analysed looking at the following characteristics: Direct current current and voltage (IV) characteristics, light power against electrical bias, optical gain against electrical bias, light distribution over the structure, output power and threshold current. Specification of material characteristics, ordinary physical models settings, initial VCSEL biasing, mesh declarations, declaration of laser physical models, their optical and electrical parameters were defined using Atlas syntax. Mirror ratings and quantum wells are the two main parameters that were studied and analysed to come up with structure trends. By determining important device parameters such as proper selection of the emission wavelength and choice of material; a VCSEL with an output power of 9.5 mW was simulated and compared with other structures.
Next generation integrated photonic circuits will be dominated by small footprint devices with lower power consumption, low threshold currentsand high efficiencies. Vertical Cavity Surface Emitting Lasers (VCSELs) having those attractive qualities has shown results to meet the next generation demands for optical communication sources. VCSELs applications are sensors, data com, optical communication, spectroscopy, printers, optical storage, laser displays, atomic optical clocks, laser radar, optical signal processing to name a few. This review centres around on the basic operation of semiconductor lasers, structure analysis of the devices and parameter optimisation for optical communication systems. This paper will provide comparisons on growth techniques and material selection and intends to give the best material realisation for nano optical sources that are up to date as used in optical communication systems. It also provides summarised improvements by other research groups in realisation of VCSELs looking at speeds, efficiency, temperature dependence and the device physical dimensions. Different semiconductor device growth methods, light emitting materials and VCSELs state of art are reviewed. Discussions and a comparisons on different methods used for realising VCSELs are also looked into in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.