Bite-wing radiographs are one of the most used intraoral radiography techniques in dentistry. AI is extremely important in terms of more efficient patient care in the field of dentistry. The aim of this study was to perform a diagnostic evaluation on bite-wing radiographs with an AI model based on CNNs. In this study, 500 bite-wing radiographs in the radiography archive of Eskişehir Osmangazi University, Faculty of Dentistry, Department of Oral and Maxillofacial Radiology were used. The CranioCatch labeling program (CranioCatch, Eskisehir, Turkey) with tooth decays, crowns, pulp, restoration material, and root-filling material for five different diagnoses were made by labeling the segmentation technique. The U-Net architecture was used to develop the AI model. F1 score, sensitivity, and precision results of the study, respectively, caries 0.8818–0.8235–0.9491, crown; 0.9629–0.9285–1, pulp; 0.9631–0.9843–0.9429, with restoration material; and 0.9714–0.9622–0.9807 was obtained as 0.9722–0.9459–1 for the root filling material. This study has shown that an AI model can be used to automatically evaluate bite-wing radiographs and the results are promising. Owing to these automatically prepared charts, physicians in a clinical intense tempo will be able to work more efficiently and quickly.
Telemedicine offers an excellent opportunity to provide continuing health care for those in need during local/global pandemics and disasters. It provides a safe and effective communication tool between health professionals and can be used as “forward triage” to manage medical/dental emergencies and to minimize the contact between the patients and clinicians during the coronavirus disease (COVID-19) pandemic. Patients with noncommunicable diseases, like cancer, diabetes, cardiovascular, or chronic respiratory diseases, may present with critical health problems due to less access to health care systems during global disasters; opportunities for screening oral mucosa might be significantly disrupted, leading to delayed diagnosis of malignant/potentially malignant lesions. Telemedicine and oral health care associated mobile applications should be implemented to provide equal access to care, to eliminate unnecessary visits to health centers, and to improve practical coordination between professionals and health facilities.
The assessment of alveolar bone loss, a crucial element of the periodontium, plays a vital role in the diagnosis of periodontitis and the prognosis of the disease. In dentistry, artificial intelligence (AI) applications have demonstrated practical and efficient diagnostic capabilities, leveraging machine learning and cognitive problem-solving functions that mimic human abilities. This study aims to evaluate the effectiveness of AI models in identifying alveolar bone loss as present or absent across different regions. To achieve this goal, alveolar bone loss models were generated using the PyTorch-based YOLO-v5 model implemented via CranioCatch software, detecting periodontal bone loss areas and labeling them using the segmentation method on 685 panoramic radiographs. Besides general evaluation, models were grouped according to subregions (incisors, canines, premolars, and molars) to provide a targeted evaluation. Our findings reveal that the lowest sensitivity and F1 score values were associated with total alveolar bone loss, while the highest values were observed in the maxillary incisor region. It shows that artificial intelligence has a high potential in analytical studies evaluating periodontal bone loss situations. Considering the limited amount of data, it is predicted that this success will increase with the provision of machine learning by using a more comprehensive data set in further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.