As IoT devices become more ubiquitous, the security of IoT-based networks becomes paramount. Machine Learning-based cybersecurity enables autonomous threat detection and prevention. However, one of the challenges of applying Machine Learning-based cybersecurity in IoT devices is feature selection as most IoT devices are resource-constrained. This paper studies two feature selection algorithms: Information Gain and PSO-based, to select a minimum number of attack features, and Decision Tree and SVM are utilized for performance comparison. The consistent use of the same metrics in feature selection and detection algorithms substantially enhances the classification accuracy compared to the non-consistent use in feature selection by Information Gain (entropy) and Tree detection algorithm by classification. Furthermore, the Tree with consistent feature selection is comparable to the ensemble that provides excellent performance at the cost of computation complexity.
Feature selection of NSL-KDD data set is usually done by finding co-relationships among features, irrespective of target prediction. We aim to determine the relationship between features and target goals to facilitate different target detection goals regardless of the correlated feature selection. The unbalanced data structure in NSL-KDD data can be relaxed by Proportional Representation (PR). However, adopting PR would deny the notion of winner-take-all by attracting a majority of the vote and also provide a fairly proportional share for any grouping of like-minded data. Furthermore, minorities and majorities would get a fair share of power and representation in data structure distribution. Particle Swarm Optimization (PSO) utilizes attack data for minority while majority employs non-attack data along with targeted classes to increase detection rate and reduce false alarms, especially for R2L and U2R attacks, as the output target goal influences feature selections and corresponding detection rate and false alarm rate. Our simulation study confirms the feasibility of the Voting Representation for minority protection and increased detection rate while reducing false alarms, which is favorable to minority over the majority.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.