Integration of artificial intelligence (AI) techniques in wireless infrastructure, real-time collection, and processing of end-user devices is now in high demand. It is now superlative to use AI to detect and predict pandemics of a colossal nature. The Coronavirus disease 2019 (COVID-19) pandemic, which originated in Wuhan China, has had disastrous effects on the global community and has overburdened advanced healthcare systems throughout the world. Globally; over 4,063,525 confirmed cases and 282,244 deaths have been recorded as of 11th May 2020, according to the European Centre for Disease Prevention and Control agency. However, the current rapid and exponential rise in the number of patients has necessitated efficient and quick prediction of the possible outcome of an infected patient for appropriate treatment using AI techniques. This paper proposes a fine-tuned Random Forest model boosted by the AdaBoost algorithm. The model uses the COVID-19 patient's geographical, travel, health, and demographic data to predict the severity of the case and the possible outcome, recovery, or death. The model has an accuracy of 94% and a F1 Score of 0.86 on the dataset used. The data analysis reveals a positive correlation between patients' gender and deaths, and also indicates that the majority of patients are aged between 20 and 70 years.
Classification of imbalanced data is a vastly explored issue of the last and present decade and still keeps the same importance because data are an essential term today and it becomes crucial when data are distributed into several classes. The term imbalance refers to uneven distribution of data into classes that severely affects the performance of traditional classifiers, that is, classifiers become biased toward the class having larger amount of data. The data generated from wireless sensor networks will have several imbalances. This review article is a decent analysis of imbalance issue for wireless sensor networks and other application domains, which will help the community to understand WHAT, WHY, and WHEN of imbalance in data and its remedies.
Cyber-attacks are evolving at a disturbing rate. Data breaches, ransomware attacks, cryptojacking, malware and phishing attacks are now rampant. In this era of cyber warfare, the software industry is also growing with an increasing number of software being used in all domains of life. This evolution has added to the problems of software vendors and users where they have to prevent a wide range of attacks. Existing watermark detection solutions have a low detection rate in the software. In order to address this issue, this paper proposes a novel blind Zero code based Watermark detection approach named KeySplitWatermark, for the protection of software against cyber-attacks. The algorithm adds watermark logically into the code utilizing the inherent properties of code and gives a robust solution. The embedding algorithm uses keywords to make segments of the code to produce a key-dependent on the watermark. The extraction algorithms use this key to remove watermark and detect tampering. When tampering increases to a certain user-defined threshold, the original software code is restored making it resilient against attacks. KeySplitWatermark is evaluated on tampering attacks on three unique samples with two distinct watermarks. The outcomes show that the proposed approach reports promising results against cyber-attacks that are powerful and viable. We compared the performance of our proposal with state-of-the-art works using two different software codes. Our results depict that KeySplitWatermark correctly detects watermarks, resulting in up to 15.95 and 17.43 percent reduction in execution time on given code samples with no increase in program size and independent of watermark size.
Diabetic Retinopathy (DR) is one of the major causes of visual impairment and blindness across the world. It is usually found in patients who suffer from diabetes for a long period. Major focus of this work is to derive optimal representation of retinal images that further helps to improve the performance of DR recognition models. In order to extract optimal representation, features extracted from multiple pre-trained ConvNet models are blended using proposed multi-modal fusion module. These final representations are used to train a Deep Neural Network (DNN) used for DR identification and severity level prediction. As each ConvNet extract different features, fusing them using 1-D pooling, and cross pooling lead to better representation than using features extracted from a single ConvNet. Experimental studies on benchmark Kaggle APTOS 2019 contest dataset reveals that the model trained on proposed blended feature representations is superior to the existing methods. In addition, we notice that cross average pooling based fusion of features from Xception and VGG16 is the most appropriate for DR recognition. With the proposed model, we achieve an accuracy of 97.41%, and a kappa statistic of 94.82 for DR identification and an accuracy of 81.7% and a kappa statistic of 71.1% for severity level prediction. Another interesting observation is that, DNN with dropout at input layer converges faster when trained using blended features, than compared to the same model trained using uni-modal deep features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.