The molecular chaperone heat shock protein 90 (Hsp90) is a current inhibition target for the treatment of diseases, including cancer. In humans, there are two major cytosolic isoforms of Hsp90 (Hsp90α and Hsp90β). Hsp90α is inducible and Hsp90β is constitutively expressed. Most Hsp90 inhibitors are pan-inhibitors that target both cytosolic isoforms of Hsp90. The development of isoform-selective inhibitors of Hsp90 may enable better clinical outcomes. Herein, by using virtual screening and binding studies, we report our work in the identification and characterisation of novel isoform-selective ligands for the middle domain of Hsp90β. Our results pave the way for further development of isoform-selective Hsp90 inhibitors.
A biantennary surfactant based on a synthetic C16‐maltoside was chosen to prepare vesicles for a potential vesicular drug delivery system. The synthesis comprised of three stages: Initial synthesis of β‐d‐maltose octaacetate was followed by glycosidation of 2‐hexyl‐decanol and final glycolipid deacetylation. Both α‐ and β‐anomers were prepared and their anomeric purity was evaluated by 1H NMR. Owing to the low water solubility of the glycolipid, addition of ionic co‐surfactants was believed to promote the surfactant distribution, thus leading to smaller and more uniform vesicles. The assembly behavior of the surfactant systems was studied by contact penetration under an optical polarizing microscope, while interfacial properties were determined by surface tension measurements. Vesicles were prepared by injection of an ethanolic solution into bulk water and investigated by dynamic light scattering and field emission scanning electron microscopy. Contact of the surfactant mixtures with water indicated a high tendency to exhibit the lamellar phase and confirmed the expected low molecular solubility. These findings suggest a potential of the surfactant to form stable vesicles. Injection of an ethanolic surfactant solution into bulk water gave sub‐micrometer sized vesicles with a narrow size distribution. Application of ionic co‐surfactants reduced the vesicle size. In particular ∼20 % of anionic SDS proved highly effective, lowering the vesicle size by nearly one decade, thus accessing nano‐sized vesicles. Encapsulation of a water‐soluble drug was achieved in a 76 ± 10 % efficiency.
Heat Shock Protein 70s (HSP70s) are key molecular chaperones that are overexpressed in many cancers and often associated with metastasis and poor prognosis. It has proven difficult to develop ATP-competitive, drug-like small molecule inhibitors of HSP70s due to the flexible and hydrophilic nature of the HSP70 ATP-binding site and its high affinity for endogenous nucleotides. The aim of this study was to explore the potential for the inhibition of HSP70 through alternative binding sites using fragment-based approaches. A surface plasmon resonance (SPR) fragment screen designed to detect secondary binding sites in HSP70 led to the identification by X-ray crystallography of a cryptic binding site in the nucleotide-binding domain (NBD) of HSP70 adjacent to the ATP-binding site. Fragment binding was confirmed and characterized as ATP-competitive using SPR and ligand-observed NMR methods. Molecular dynamics simulations were applied to understand the interactions with the protein upon ligand binding, and local secondary structure changes consistent with interconversion between the observed crystal structures with and without the cryptic pocket were detected. A virtual high-throughput screen (vHTS) against the cryptic pocket was conducted, and five compounds with diverse chemical scaffolds were confirmed to bind to HSP70 with micromolar affinity by SPR. These results identified and characterized a new targetable site on HSP70. While targeting HSP70 remains challenging, the new site may provide opportunities to develop allosteric ATP-competitive inhibitors with differentiated physicochemical properties from current series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.