As people leave on the Web their opinions on products and services they have used, it has become important to develop methods of (semi-)automatically classifying and gauging them. The task of analyzing such data, collectively called customer feedback data, is known as opinion mining. Opinion mining consists of several steps, and multiple techniques have been proposed for each step. In this paper, we survey and analyze various techniques that have been developed for the key tasks of opinion mining. On the basis of our survey and analysis of the techniques, we provide an overall picture of what is involved in developing a software system for opinion mining.
As traffic congestion in cities becomes serious, intelligent traffic signal control has been actively studied. Deep Q-Network (DQN), a representative deep reinforcement learning algorithm, is applied to various domains from fully-observable game environment to traffic signal control. Due to the effective performance of DQN, deep reinforcement learning has improved speeds and various DQN extensions have been introduced. However, most traffic signal control researches were performed at a single intersection, and because of the use of virtual simulators, there are limitations that do not take into account variables that affect actual traffic conditions. In this paper, we propose a cooperative traffic signal control with traffic flow prediction (TFP-CTSC) for a multi-intersection. A traffic flow prediction model predicts future traffic state and considers the variables that affect actual traffic conditions. In addition, for cooperative traffic signal control in multi-intersection, each intersection is modeled as an agent, and each agent is trained to take best action by receiving traffic states from the road environment. To deal with multi-intersection efficiently, agents share their traffic information with other adjacent intersections. In the experiment, TFP-CTSC is compared with existing traffic signal control algorithms in a 4 × 4 intersection environment. We verify our traffic flow prediction and cooperative method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.