Microwave spectra and structure of an isoxazole-CO Van der Waals complex The spectroscopy and single vibronic level fluorescence quantum yields of jet cooled transstilbene and its van der Waals complexes J. Chem. Phys. 78, 5493 (1983); 10.1063/1.445477Fluorescence excitation spectrum of stetrazine cooled in a supersonic free jet: Van der waals complexes and isotopic species
The layer-by-layer alternate assemblies incorporating two kinds of cyanine dyes have been fabricated by alternately adsorbing a cationic polyelectrolyte and anionic cyanine dyes on the quartz plate. A thiacyanine dye (dye I) was employed as the donor and two kinds of thiacarbocyanine dye having a meso-alkyl groups m-ethyl (dye II), m-methyl (dye III)sas the acceptor. The mole fraction of the acceptor in the mixed J-aggregate, χ, was varied from 0 to 1. It is confirmed that these dye combinations form the mixed J-aggregate in the alternate assemblies. From steady-state fluorescence spectra of the molecular assemblies, excitation energy transfer from the donor J-aggregate to the acceptor J-aggregate is observed, whose kinetics obeys the Stern-Volmer relationship. The experimentally determined rate constant of energy transfer, k ET , is fairly large, indicating efficient energy transfer due to exciton migration through the donor J-aggregate. The relative fluorescence quantum yield and the fluorescence lifetime of the acceptor aggregate decrease with increasing χ, implying the considerable self-quenching of acceptor fluorescence. The relative change of the coherent size of the dye II aggregate has been estimated from the J-band line width and the radiative decay rate constant. It is found that the coherent size of the dye II aggregate is increased by a factor of 4-5 with increasing χ from 0.008 to 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.