According to the IPCC Fifth Assessment Report, air temperature and humidity of the future are expected to gradually increase over the current. In this study, future PMPs are estimated by using future dew point temperature projection data which are obtained from RCM data provided by the Korea Meteorological Administration. First, bias included in future dew point temperature projection data which is provided on a daily basis is corrected through a quantile-mapping method. Next, using a scale-invariance technique, 12-hour duration 100-year return period dew point temperatures which are essential input data for PMPs estimation are estimated from bias-corrected future dew point temperature data. After estimating future PMPs, it can be shown that PMPs in all future climate change scenarios (AR5 RCP2.6, RCP 4.5, RCP 6.0, and RCP 8.5) are very likely to increase.
Looking at future data obtained from global climate models, it is expected that future extreme rainfall will increase in many parts of the world. The Clausius-Clapeyron equation provides a physical basis for understanding the sensitivity of rainfall in response to warming, but the relationship between rainfall and temperature is still uncertain. The purpose of this study is to analyze the sensitivity of extreme daily rainfall depth during the summer season (June–September) to climate change in Korea. The relationship between the observed extreme daily rainfall depth and the surface air temperature (SAT) and dew-point temperature (DPT), which were observed in the 60 sites of the Korea Meteorological Administration, were analyzed. The same analysis was also performed using future data provided in various climate models. In addition, the future trends of extreme rainfall, SAT, and DPT were analyzed using future data obtained from climate models, and the effects of increasing SAT and DPT on future extreme rainfall changes were investigated. Finally, it has been confirmed that using changes in SAT and DPT to look at changes in future extreme rainfall can give more consistent future projection results than using future rainfall data directly.
Abstract:In this study, future probable maximum precipitations (PMPs) based on future meteorological variables produced from three regional climate models (RCMs) of 50-km spatial resolution provided by Coordinated Regional Climate Downscaling Experiment (CORDEX) are projected. In order to estimate future PMPs, the hydro-meteorological method is applied. The key future meteorological variable used to analyze the rate of change of future PMPs is the dew-point temperature. Future 12-h persistence 100-year return period extreme dew-point temperatures obtained from future daily dew-point temperature time series by using the scale-invariance method are applied to estimate future PMPs. As a result of estimating future PMPs using several RCMs and representative concentration pathways (RCPs) scenarios, the spatial distribution of future PMPs is expected to be similar to that of the present, but PMPs tend to increase in the future. In addition, it can be seen that the difference in PMPs estimated from various RCMs and RCP scenarios is getting bigger in the future. Especially after 2070, the difference has increased even more. In the short term, it is proposed to establish climate change adaptation policies with an 18% increase in PMPs, which is the ensemble average in the future year 2050.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.