AbstrakToko GOC Kosmetik adalah sebuah toko yang menjual berbagai macam merk kosmetik yang saat ini ramai dengan pelanggan. Begitu banyak transaksi yang dilakukan setiap harinya mengakibatkan penumpukan data transaksi. Toko GOC mempunyai beberapa masalah seperti rumitnya mengetahui produk (item) yang sering terjual sehingga toko GOC Kosmetik tidak dapat mengetahui kosmetik apa saja yang sudah tidak memiliki persediaan lagi. Sehingga penulis data transaksi dapat diolah dengan menggunakan data mining agar dapat mengolah pengetahuan-pengetahuan data dalam skala besar secara efisien dan efektif. Dan menggunakan algoritma apriori sebagai metode yang melihat keterkaitan hubungan antar elemen. Untuk mengetahui hubungan item set apa saja yang terjadi pada proses transaksi dengan menggunakan algoritma apriori merupakan algoritma yang pertaman kali digunakan ketika melakukan proses asosiasi. Hasil Penelitian ini menunjukan bahwa bila membeli SS hingga hendak membeli KN dengan nilai support 69% serta nilai confidance 88% sehingga data ini bisa berikan saran kepada pihak toko buat tingkatkan produk serta lebih tingkatkan strategi penjualan produk buat menggapai nilai keuntungan yang besar. Kata kunci: Data Minning, Algoritma Apriori, Support, Confidence Abstract GOC Cosmetics Store is a shop that sells various cosmetic brands that are currently busy with customers. So many transactions are made every day resulting in a lot of data transactions. The GOC store has several problems, such as the complexity of knowing which products are often sold, so that the GOC Cosmetics store cannot find out which cosmetics are out of stock. So that the writer of transaction data can be processed using data mining to process data knowledge on a large scale efficiently and effectively. And using a priori algorithm as a method that connects the interrelationships between elements. To find out what item set relationships occur in the transaction process, using the a priori algorithm is the first algorithm used when doing the association process. The results of this study indicate that if you buy SS you want to buy KN with a support value of 69% and a confidence value of 88% so that this data can provide advice to the store to improve products and further improve product sales strategies to achieve a large profit value.Keywords: Keywords: Data Minning, Apriori Algorithm, Support, Confidence
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.