<p class="abstract"><strong>Background:</strong> Adolescence is a critical period for cerebral development. Exposure to addictive substances during this phase leads to various alterations in brain functions that persist into adulthood. The present study was designed to study the neurotoxic effects of tramadol and cannabis, alone and in combination, in adolescent male albino rats by studying their behavioral, biochemical, and histopathological neurotoxic effects and their long–term consequences after withdrawal.</p><p class="abstract"><strong>Methods:</strong> <span lang="EN-IN">For this purpose, 132 adolescent male albino rats were divided into 5 groups (22 rats/ group). Group I (negative control), received only regular diet and tap water to measure the basic parameters, Group II (positive control; IIA&IIB); IIA, gavaged with normal saline. IIB, gavaged with olive oil. Group III (tramadol), gavaged with tramadol (42, 84 and 168 mg/kg/day) in the first, second and third ten days of the study respectively. Group IV (cannabis), gavaged with hashish extract (92, 184 and 368 mg/kg/day) in the first, second and third ten days of the study respectively. Group V (tramadol+cannabis), gavaged with tramadol and hashish extract in the same doses as Group III&IV. By the end of the first month, the half number of rats was subjected to performing behavior tests. Specimens from the brain were taken for performing biochemical and histopathological studies. All remaining rats were held for another 4 weeks non–dosing spontaneous recovery period after withdrawal of the treatment and were evaluated again by the same previous parameters.</span></p><p class="abstract"><strong>Results:</strong> Abuse of tramadol or cannabis, alone and in combination, caused antidepressant effect (sucrose preference test), impaired spatial memory (Morris water maze), elevated serotonin levels in the cerebral cortex and hippocampus, induced oxidative stress (significantly elevated malondialdehyde level and reduced catalase activity) as well as deleteriously altered brain histopathology and marked increase in brain Caspase–3 expression. However, abuse of both tramadol and cannabis conferred more antidepressant effect but more neurotoxic effect. After withdrawal, the antidepressant effect was reversed, no improvement of the spatial memory, marked depletion of 5–HT, more improvement in antioxidants and apoptotic markers and incomplete regression of brain histopathological alteration resulted.</p><p class="abstract"><strong>Conclusions:</strong> <span lang="EN-IN">Abuse of tramadol and cannabis, alone and in combination, induced neurotoxicity which proved behaviorally, biochemically and histopathologically.</span></p>
Colorectal cancer (CRC) is considered one of the most commonly diagnosed malignant diseases. Recently, there has been an increased focus on using nanotechnology to resolve most of the limitations in conventional chemotherapy. Niosomes have great advantages that overcome the drawbacks associated with other lipid drug delivery systems. They are simple, cheap, and highly stable nanocarriers. This study investigated the effectiveness of using niosomes with their amphiphilic characteristics in the incorporation of both hydrophilic and hydrophobic anticancer drugs for CRC treatment. Methods: Drug-free niosomes were formulated using a response surface D-optimal factorial design to study the cholesterol molar ratio, surfactant molar ratio and surfactant type effect on the particle size and Z-potential of the prepared niosomes. After numerical and statistical optimization, an optimized formulation having a particle size of 194.4 ± 15.5 nm and a Z-potential of 31.8 ± 1.9 mV was selected to be loaded with Oxaliplatin and Paclitaxel separately in different concentrations. The formulations with the highest entrapment efficiency (EE%) were evaluated for their drug release using the dialysis bag method, in vitro antitumor activity on HT-29 colon cancer cell line and apoptosis activity. Results: Niosomes prepared using d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) at a molar ratio 4, cholesterol (2 molar ratio) and loaded with 1 molar ratio of either Oxaliplatin or Paclitaxel provided nanosized vesicles (278.5 ± 19.7 and 251.6 ± 18.1 nm) with a Z-potential value (32.7 ± 1.01 and 31.69 ± 0.98 mV) with the highest EE% (90.57 ± 2.05 and 93.51 ± 2.97) for Oxaliplatin and Paclitaxel, respectively. These formulations demonstrated up to 48 h drug release and increased the in vitro cytotoxicity and apoptosis efficiency of both drugs up to twice as much as free drugs. Conclusion: These findings suggest that different formulation composition parameters can be adjusted to obtain nanosized niosomal vesicles with an accepted Z-potential. These niosomes could be loaded with either hydrophilic drugs such as Oxaliplatin or hydrophobic drugs such as Paclitaxel. Drug-loaded niosomes, as a unique nanomicellar system, could enhance the cellular uptake of both drugs, resulting in enhanced cytotoxic and apoptosis effects against HT-29 colon cancer cells. Oxaliplatin–niosomes and Paclitaxel–niosomes can be considered promising alternative drug delivery systems with enhanced bioavailability of these two anticancer drugs for colorectal cancer treatment.
Many xenobiotics are known to cause hepatic damage with subsequent significant morbidity and mortality. Doxorubicin (DOX) is a broad-spectrum antineoplastic agent. DOX is reported to cause hepatocellular damage. Previous studies verified the promising role of many natural antioxidant products against various models of hepatic dysfunction. We conducted this study to evaluate the possible hepatoprotective effect of silymarin (SILY) and/or chlorogenic acid (CGA) in a rat model of DOX-induced hepatotoxicity. For this purpose, we randomly divided 30 adult male rats into five equal groups as control, DOX, co-treated DOX with SILY, co-treated DOX with GCA and co-treated DOX with SILY and CGA groups. All treatments were administered every second day for 4 weeks. Our results showed that simultaneous SILY and CGA administration caused a significant decrease in hepatic apoptosis biomarkers (hepatic caspase-3 and nuclear factor-κB levels), a significant improvement in hepatic oxidant/antioxidant status (malondialdehyde and superoxide dismutase) and significant decrease in hepatic pro-inflammatory biomarkers (tumor necrosis factor-alpha and interlukin-1β) compared with DOX treatment. We concluded that adding CGA to SILY acts as a hepatoprotective agent against DOX-induced liver injury through inhibiting apoptosis biomarkers, maintaining antioxidant enzyme levels, decreasing pro-inflammatory cytokines as well as regulating liver adenosine monophosphate-activated protein kinase signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.