A comparative study was carried out to investigate the suitability of some selected Nigerian vegetable oils as alternative quenchant to SAE40 engine oil for industrial heat treatment of Medium Carbon steels. The study involved the characterization of physicochemical properties and fatty acid profile of cotton seed oil, palm kernel oil, neem seed oil and palm oil. The quenching performance of these vegetable oils was conducted at quenchant bath temperatures of 34˚C, 50˚C, 70˚C, and 100˚C. SAE40 engine oil (Standard quenchant) and tap water served as control. The effect of cooling rates of the quenching media on mechanical properties and microstructure of the quenched steel samples were investigated. The results obtained show that the different vegetable oils have different viscosity and viscosity-temperature behavior just as their molecular structures were different. The mechanical properties of the as-quenched specimens in these oils show that the hardness of steel quenched in palm kernel oil was highest 40.85HRC. As received sample absorbed the highest amount of energy (183 J) before fracture while sample quenched in water absorbs least energy (28 J). Hence vegetable oil is suitable as alternative quenchant to petroleum based SAE40 engine oil for quenching medium carbon steels, without cracking or distortion, the most suitable among them being palm kernel oil.
Theoretical analysis of the effects of velocity of impact using suitable heat transfer equations expressed in forms of finite difference method was developed and used to determine their effects on the characteristic cooling parameters during quenching process. Various velocities of impact obtained by varying the heights of specimen drops were also used to experimentally determine their effects on characteristic cooling parameters and mechanical properties of medium carbon steel using water as the quenching medium. At height of drop of 0.5 m, 1.0 m, 1.5 m, and 2.0 m, the tensile strength of the material is 410.4, 496.12, 530.56, and 560.40 N/mm 2 respectively. The corresponding hardness values are 42.4, 45.2, 46.2, 50.5 HRC respectively. It is found that as the velocity of impact increases, maximum cooling rate increases. Hardness and ultimate tensile strength also increase. There are good agreements between theoretical and experimentally determined values of critical cooling parameters of water during quenching operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.