Properties of melon seed and beniseed oils which are considered as "environmentally" friendly oils were investigated and the performance evaluation of the formulated beniseed and melon seed oilbased cutting fluids were carried out. American Iron and Steel Institute (AISI) 304L alloy steel was used as workpiece and tungsten carbide as cutting tool, while commercial mineral oil-based cutting fluid was used as a control experiment. The viscosities of the melon seed oil and beniseed oil-based cutting fluids were 1.53 mm 2/s and 0.86mm 2/ s, while their pH values were 8.2 and 8.7 respectively. The optimal multi-response turning parameters was achieved using cutting speed of 159 rev/min (level 3), feed rate of 0.9 mm/rev (level 3), depth of cut of 1 mm (level 2) and type of cutting fluid of 1.53mm/s (level 3). The ANOVA results show that feed rate has the most significant effect on the surface roughness (92.93%) and cutting temperature (27.51%).
The hardening characteristics of medium carbon steel and ductile cast iron using neem oil as quenching medium has been investigated. The samples were quenched to room temperature in Neem oil. To compare the effectiveness of the neem oil samples were also quenched in water and SAE engine oil the commercial quenchants. The microstructures and mechanical properties of the quenched samples were used to determine the quench severity of the neem oil. The result shows that hardness value of the medium carbon steel increased from 18.30HVN in the as-cast condition to 21.60, 20.30and 20.70HVN while that of ductile cast iron samples increased from 18.90HVN in the as-cast condition to 22.65, 20.30 and 21.30HVN for water, neem oil and SAE40 engine oil respectively. The as-received steel sample gave the highest impact strength value and water quenched sample gave the least impact strength. The impact strength of the medium carbon steel samples is 50.84, 41.35, 30.50 and 45.15 Joule and that of ductile iron is 2.71, 1.02, 0.68 and 1.70 Joule for as-cast condition, neem oil, water and SAE 40 engine oil quenched respectively. The microstructure of the samples quenched in the Neem oil revealed the formation of martensite. Hence, neem oil can be used where cooling severity less than that of water but greater than SAE 40 engine oil is required for hardening of plain carbon steels and ductile cast iron.
A comparative study was carried out to investigate the suitability of some selected Nigerian vegetable oils as alternative quenchant to SAE40 engine oil for industrial heat treatment of Medium Carbon steels. The study involved the characterization of physicochemical properties and fatty acid profile of cotton seed oil, palm kernel oil, neem seed oil and palm oil. The quenching performance of these vegetable oils was conducted at quenchant bath temperatures of 34˚C, 50˚C, 70˚C, and 100˚C. SAE40 engine oil (Standard quenchant) and tap water served as control. The effect of cooling rates of the quenching media on mechanical properties and microstructure of the quenched steel samples were investigated. The results obtained show that the different vegetable oils have different viscosity and viscosity-temperature behavior just as their molecular structures were different. The mechanical properties of the as-quenched specimens in these oils show that the hardness of steel quenched in palm kernel oil was highest 40.85HRC. As received sample absorbed the highest amount of energy (183 J) before fracture while sample quenched in water absorbs least energy (28 J). Hence vegetable oil is suitable as alternative quenchant to petroleum based SAE40 engine oil for quenching medium carbon steels, without cracking or distortion, the most suitable among them being palm kernel oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.