Starting with a protocol originally developed for the purification of intact plastids from cauliflower buds [Journet and Douce (1985) Plant Physiol. 79, 458-467] we have modified this method to obtain intact heterotrophic plastids from etiolated barley leaves (Hordeum vulgare) and pea (Pisum sativum) and maize (Zea mays) endosperm. Two subsequent centrifugation steps on Percoll gradients were performed, the first as an isopycnic, the second as zonal, centrifugation step in a swing-out rotor. Percoll density and centrifugation time were adjusted for the various tissues. The obtained plastid preparations are characterized by a low degree of contamination with other cellular components and an intactness of at least 90%. In isolated maize endosperm amyloplasts, starch synthesis is driven by exogenously applied hexose phosphates (glucose 6-phosphate and glucose 1-phosphate) rather than by dihydroxyacetone phosphate. The hexose-phosphate-dependent starch synthesis is strictly dependent upon the intactness of the plastids and is increased up to 9-fold when ATP and 3-phosphoglyceric acid are added to the incubation medium. The occurrence of fructose-1,6-bisphosphatase and malate dehydrogenases in some plastid types is discussed in relation to their possible role in starch synthesis.
The transcription rates of numerous plant genes have previously been shown to be strongly affected by pathogen infection or elicitor treatment. Here we estimate the extent and complexity of this response by analyzing the patterns of mRNA induction in fungal elicitor-treated parsley cells (Petroselinum crispum) for several representatives from various primary and secondary metabolic pathways, cytosolic as well as plastidic. As a reference, we use the biphasic accumulation curve for the coordinately induced mRNAs encoding the three core enzymes of general phenylpropanoid metabolism, phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and 4-coumarate:CoA ligase. Coincidence with this curve was observed for the mRNA induction kinetics of several, but not all, phenylpropanoid branch pathway-related reactions, whereas seven selected mRNAs from the pentose phosphate, glycolytic and shikimate pathways, including various cytosolic and plastidic isoforms, were induced with great differences in timing. Likewise unique and dissimilar from the reference curve were the induction patterns for various mRNAs encoding enzymes or proteins that are either more distantly or not at all related to phenylpropanoid metabolism. None of over 40 mRNAs tested so far remained unaffected. Using one strongly elicitor-responsive mRNA from carbohydrate metabolism, encoding a cytosolic glucose 6-phosphate dehydrogenase, for in situ RNA/RNA hybridization in fungus-infected parsley leaf tissue, we observed again the previously reported, close simulation of metabolic changes in true plant/fungus interactions by elicitor treatment of cultured cells. In addition to demonstrating extensive, highly complex functional, temporal and spatial patterns of changes in gene expression in infected plant cells, these results provide valuable information for the identification of pathogen-responsive promoters suitable for gene technology-assisted resistance breeding.
Intact etioplasts with an intactness of 85% and with a cytosolic and a mitochondrial contamination of less than 10% were isolated from 8-d-old dark-grown barley (Hordeum vulgare)
We have developed a method for the purification of chloroplasts from green-pepper fruits. These chloroplasts are characterized by a high degree of intactness and low contamination with other cellular components. The purified chloroplasts perform CO 2 fixation and posses a fructose-1,6-bisphosphate phosphatase, necessary for the conversion of CO2 to starch. Besides carbon dioxide, these chloroplasts take up external carbon skeletons as precursors for starch synthesis. From various potential precursors tested, glucose-6-phosphate (Glc6P) is used with the highest efficiency for starch synthesis. The Glc6P-dependent starch synthesis is strongly enhanced in the presence of light, ATP, and phosphoglyceric acid. Adenosine 5'-monophosphate acts as an inhibitor of ATP-stimulated Glc6P-dependent starch synthesis. The ability to use Glc6P as a precursor for starch synthesis indicates the presence of a functional hexose-phosphate translocator in isolated chloroplasts from green-pepper fruits. The results are discussed with respect to the physiological function of chloroplasts in fruit tissues. We predict that chloroplasts from green-pepper fruits possess a chloroplastic hexose-phosphate translocator which enables these plastids to maintain starch synthesis from cytosolic precursors during both day and night.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.