Cardiotoxicity as an off-target effect of doxorubicin therapy is a major limiting factor for its clinical use as a choice cytotoxic agent. Seeds of Irvingia gabonensis have been reported to possess both nutritional and medicinal values which include antidiabetic, weight losing, antihyperlipidemic, and antioxidative effects. Protective effects of Irvingia gabonensis ethanol seed extract (IGESE) was investigated in doxorubicin (DOX)-mediated cardiotoxicity induced with single intraperitoneal injection of 15 mg/kg of DOX following the oral pretreatments of Wistar rats with 100-400 mg/kg/day of IGESE for 10 days, using serum cardiac enzyme markers (cardiac troponin I (cTI) and lactate dehydrogenase (LDH)), cardiac tissue oxidative stress markers (catalase (CAT), malonyldialdehyde (MDA), superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione peroxidase (GSH-Px), and reduced glutathione (GSH)), and cardiac histopathology endpoints. In addition, both qualitative and quantitative analyses to determine IGESE’s secondary metabolites profile and its in vitro antioxidant activities were also conducted. Results revealed that serum cTnI and LDH were significantly elevated by the DOX treatment. Similarly, activities of tissue SOD, CAT, GST, and GSH levels were profoundly reduced, while GPx activity and MDA levels were profoundly increased by DOX treatment. These biochemical changes were associated with microthrombi formation in the DOX-treated cardiac tissues on histological examination. However, oral pretreatments with 100-400 mg/kg/day of IGESE dissolved in 5% DMSO in distilled water significantly attenuated increases in the serum cTnI and LDH, prevented significant alterations in the serum lipid profile and the tissue activities and levels of oxidative stress markers while improving cardiovascular disease risk indices and DOX-induced histopathological lesions. The in vitro antioxidant studies showed IGESE to have good antioxidant profile and contained 56 major secondary metabolites prominent among which are γ-sitosterol, Phytol, neophytadiene, stigmasterol, vitamin E, hexadecanoic acid and its ethyl ester, Phytyl palmitate, campesterol, lupeol, and squalene. Overall, both the in vitro and in vivo findings indicate that IGESE may be a promising prophylactic cardioprotective agent against DOX-induced cardiotoxicity, at least in part mediated via IGESE’s antioxidant and free radical scavenging and antithrombotic mechanisms.
Objective. To evaluate the effect of the chronic use of combined oral contraceptives (COCs: ethinyl estradiol and levonorgestrel) on the indices of metabolic syndrome in adult female Wistar rats and possible therapeutic management. Materials and Methods. 64 female Wistar rats received either distilled water, norethindrone (NOR), COC, intranasal insulin (INI), metformin (MET), saxagliptin (SAX), INI+MET, and INI+SAX. After 8 weeks of exposure to COC, the animals were sorted into the therapeutic groups. Several parameters were assayed for, such as body weight changes, fasting blood glucose (FBG) level, insulin levels, inflammatory cytokines, and glycated hemoglobin (Hb1Ac). Results. The levels of FBG, insulin, and Hb1Ac were increased consequent upon COC treatment. Treatment with INI+SAX and INI+MET reduced significantly the levels of FBG and Hb1Ac; in addition, the level of insulin was significantly increased in the INI+MET groups ( p ≤ 0.05 ). Serum lipid profile analysis showed a statistical reduction in high-density lipoprotein (HDL) level; this reduction was also significantly reversed in the INI+SAX group. Reduced catalase activity observed in the COC group was reversed in the INI+MET group ( p ≤ 0.05 ). A nonsignificant increase in the level of TNF-α as a result of COC treatment was reversed by INI and INI+MET treatment. Liver GLUT4 and G-6-phosphate levels were significantly increased by COC treatment, and this effect was reversed by INI+SAX in both assays, respectively ( p ≤ 0.01 ). Conclusions. The use of MET and SAX in combination with INI has been shown to reverse some indices of MetS. This study proposes a clinical phase to backup and ascertain these preclinical findings.
Background: Malaria rapid diagnostic tests (mRDTs) are the preferred option for programmatic deployment. Aims: There are numerous mRDTs on the Nigerian market and there is a need to guide practitioners on the relative performance of the commonly used brands of mRDT in Nigeria. Subjects and Methods: The performance of three commonly used Histidine-Rich-Protein-2-based mRDTs (SD-Bioline™, Carestart™ and Paracheck-Pf™) against microscopy of Giemsa stained blood and polymerase chain reaction (PCR) was evaluated among 190 febrile under-5 children in Ibadan, Nigeria. We calculated the sensitivity, specificity, predictive values, accuracy, and agreements. Results: There were 53.2% males. The prevalence of malaria parasite by microscopy was 46.8% and 57.9% by PCR. Malaria parasite detection by SD-Bioline™ was 60.5%, Carestart™: 60.0% and Paracheck-Pf™ 60.0%. Using microscopy as the gold standard, the sensitivities of SD-Bioline™, Carestart™ and Paracheck-Pf™ mRDT were 97.8%, 96.7% and 97.8% respectively while the specificities were 73.0%, 72.0% and 74.0% respectively. Using PCR as the gold standard, the sensitivity for both SD-Bioline™ and Paracheck-Pf™ was 85.5% and for CareStart was 84.6% while the specificity of SD-Bioline™, Carestart™, and Paracheck-Pf™ was 73.8%, 72.4%, and 75.0% respectively. The test accuracy was 81.0% for both SD-Bioline™ and Paracheck-Pf™ and 80.0% for Caresatrt™. The kappa coefficient of agreement between PCR and each of SD-Bioline™, Carestart, ParaCheck™ and microscopy was 0.597, 0.578, 0.609 and 0.739 respectively. Conclusion: The performance of the three mRDTs is a proof that any of the three is suitable for use in the diagnosis of malaria in the southwest of Nigeria.
Trastuzumab (TZM) is useful in the clinical management of HER2-positive metastatic breast, gastric, and colorectal carcinoma but has been limited by its off-target cardiotoxicity. This study investigates the therapeutic potentials of 0.25 mg/kg/day amlodipine, 0.035 mg/kg/day lisinopril, 5 mg/kg/day valsartan, and their fixed-dose combinations in TZM-intoxicated Wistar rats that were randomly allotted into 10 groups of 6 rats for each group. Group I rats were treated with 10 ml/kg/day sterile water orally and 1 ml/kg/day sterile water intraperitoneally; Groups II, III, and IV rats were orally gavaged with 5 mg/kg/day valsartan and 1 ml/kg/day sterile water intraperitoneally, 0.25 mg/kg/day amlodipine and 1 ml/kg/day sterile water via the intraperitoneal route, 0.035 mg/kg/day lisinopril and 1 ml/kg/day sterile water administered intraperitoneally, respectively. Group V rats were orally treated with 10 ml/kg/day of sterile water prior to intraperitoneal administration of 2.25 mg/kg/day of TZM. Groups VI–VIII rats were equally pretreated with 5 mg/kg/day valsartan, 0.25 mg/kg/day amlodipine, and 0.035 mg/kg/day lisinopril before intraperitoneal 2.25 mg/kg/day TZM treatment, respectively; Groups IX and X rats were orally pretreated with the fixed-dose combinations of 0.25 mg/kg/day amlodipine +0.035 mg/kg/day lisinopril and 5 mg/kg/day valsartan +0.035 mg/kg/day lisinopril, respectively, before TZM treatment. Cardiac injury and tissue oxidative stress markers, complete lipids profile, histopathological, and immunohistochemical assays were the evaluating endpoints. Results showed that repeated TZM treatments caused profound increases in the serum TG and VLDL-c levels, serum cTnI and LDH levels, and cardiac tissue caspase-3 and -9 levels but decreased BCL-2 expression. TZM also profoundly attenuated CAT, SOD, GST and GPx activities, and increased MDA levels in the treated tissues. In addition, TZM cardiotoxicity was characterized by marked vascular and cardiomyocyte congestion and coronary artery microthrombi formation. However, the altered biochemical, histopathological, and immunohistochemical changes were reversed with amlodipine, lisinopril, valsartan, and fixed-dose combinations, although fixed-dose valsartan/lisinopril combination was further associated with hyperlipidemia and increased AI and CRI values and coronary artery cartilaginous metaplasia. Thus, the promising therapeutic potentials of amlodipine, lisinopril, valsartan and their fixed-dose combinations in the management of TZM cardiotoxicity, majorly mediated via antiapoptotic and oxidative stress inhibition mechanisms were unveiled through this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.