ABSTRACT:Forecasts of water level during river floods require accurate predictions of the evolution of river dune dimensions, because the hydraulic roughness of the main channel is largely determined by the bed morphology. River dune dimensions are controlled by processes like merging and splitting of dunes. Particularly the process of dune splitting is still poorly understood and -as a result -not yet included in operational dune evolution models. In the current paper, the process of dune splitting is investigated by carrying out laboratory experiments and by means of a sensitivity analysis using a numerical dune evolution model. In the numerical model, we introduced superimposed TRIAS ripples (i.e. triangular asymmetric stoss side-ripples) on the stoss sides of underlying dunes as soon as these stoss sides exceed a certain critical length. Simulations with the model including dune splitting showed that predictions of equilibrium dune characteristics were significantly improved compared to the model without dune splitting. As dune splitting is implemented in a parameterized way, the computational cost remains low which means that dune evolution can be calculated on the timescale of a flood wave. Subsequently, we used this model to study the mechanism of dune splitting.Literature showed that the initiation of a strong flow separation zone behind a superimposed bedform is one of the main mechanisms behind dune splitting. The flume experiments indicated that besides its height also the lee side slope of the superimposed bedform is an important factor to determine the strength of the flow separation zone and therefore is an important aspect in dune splitting. The sensitivity analysis of the dune evolution model showed that a minimum stoss side length was required to develop a strong flow separation zone.
In the present study, two bed-load transport models are introduced in an existing idealized dune model. These allow for the modeling of the spatial lag between the sediment transport rate and bed shear stress along dune surfaces. This lag is an important factor in determining transitions between bedform regimes. Results of the original dune model (using an equilibrium transport formula) are compared with (1) a new model version that directly models spatial lag with a relaxation equation and ( 2) a new model version including pick-up and deposition processes. Both bed-load models use mean particle step length as an important parameter, which is varied to assess which value is appropriate for the dune regime. Laboratory experiments are simulated with the model. This shows that the results are best with the pick-up and deposition model version, combined with a step length of 25 times the particle diameter. It is furthermore shown that in principle the model is also able to wash out fully grown dunes, by increasing the step length parameter.
Large asymmetric bedforms known as dunes commonly dominate the bed of sand rivers. Due to the turbulence generation over their stoss and lee sides, dunes are of central importance in predicting hydraulic roughness and water levels. During floods in steep alluvial rivers, dunes are observed to grow rapidly as flow strength increases, undergoing an unstable transition regime, after which they are washed out in what is called upper stage plane bed. This transition of dunes to upper stage plane bed is associated with high transport of bed sediment in suspension and large decrease in bedform roughness. In the present study, we aim to improve the prediction of dune development and dune transition to upper stage plane bed by introducing the transport of suspended sediment in an existing dune evolution model. In addition, flume experiments are carried out to investigate dune development under bed load and suspended load dominated transport regimes, and to get insight in the time scales related to the transition of dunes to upper stage plane bed. Simulations with the extended model including the transport of suspended sediment show significant improvement in the prediction of equilibrium dune parameters (e.g. dune height, dune length, dune steepness, dune migration rate, dune lee side slope) both under bed load dominant and suspended load dominant transport regimes. The chosen modeling approach also allows us to model the transition of dunes to upper stage plane bed which was not possible with the original dune evolution model. The extended model predicts change in the dune shapes as was observed in the flume experiments with decreasing dune heights and dune lee slopes. Furthermore, the time scale of dune transition to upper stage plane bed was quite well predicted by the extended model. Copyright © 2015 John Wiley & Sons, Ltd.
In this paper we derive a new morphological model, with an extended version of the sediment transport model for the mean step length (the average distance travelled by sediment particles), in which this mean step length depends on the mean bed shear stress. This model makes the step length increase with increasing flow, in line with previous experimental results. To account for suspension and the large-scale turbulent structures in rivers, the step length also depends explicitly on water depth. This approach enabled modelling of the transition from dunes to the upper-stage plane bed. It was shown that by increasing the step length, the lag between shear stress and bed load transport rate increases, and the dunes eventually become smoother and lower, until finally the dunes wash out. The newly adopted model approach is tested successfully with a synthetic data set from the literature, where plane bed conditions are indeed reached in the model, similar to the results of a more advanced model. It is shown that with increasing discharge, the flow increases, which leads to higher step length and to the washing out of the dunes. Although the present model still overestimates the dune height for river cases, the potential of the model concept for river dune dynamics, including the transition to upper-stage plane bed, is shown. The model results indicate that, if a transition to upper-stage plane bed occurs in a realistic river scenario, a reduction of the water depth of approximately 0.5 m can occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.