We present a system that estimates the motion of a stereo head, or a single moving camera, based on video input. The system operates in real time with low delay, and the motion estimates are used for navigational purposes. The front end of the system is a feature tracker. Point features are matched between pairs of frames and linked into image trajectories at video rate. Robust estimates of the camera motion are then produced from the feature tracks using a geometric hypothesize-and-test architecture. This generates motion estimates from visual input alone. No prior knowledge of the scene or the motion is necessary. The visual estimates can also be used in conjunction with information from other sources, such as a global positioning system, inertia sensors, wheel encoders, etc. The pose estimation method has been applied successfully to video from aerial, automotive, and handheld platforms. We focus on results obtained with a stereo head mounted on an autonomous ground vehicle. We give examples of camera trajectories estimated in real time purely from images over previously unseen distances ͑600 m͒ and periods of time.
Abstract-This paper presents two new, efficient solutions to the two-view, relative pose problem from three image point correspondences and one common reference direction. This three-plus-one problem can be used either as a substitute for the classic five-point algorithm, using a vanishing point for the reference direction, or to make use of an inertial measurement unit commonly available on robots and mobile devices where the gravity vector becomes the reference direction. We provide a simple, closed-form solution and a solution based on algebraic geometry which offers numerical advantages. In addition, we introduce a new method for computing visual odometry with RANSAC and four point correspondences per hypothesis. In a set of real experiments, we demonstrate the power of our approach by comparing it to the five-point method in a hypothesizeand-test visual odometry setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.