In this work a magnetoelectric (ME) current sensor design based on a magnetoelectric effect is presented and discussed. The resonant and non-resonant type of ME current sensors are considered. Theoretical calculations of the ME current sensors by the equivalent circuit method were conducted. The application of different sensors using the new effects, for example, the ME effect, is made possible with the development of new ME composites. A large number of studies conducted in the field of new composites, allowed us to obtain a high magnetostrictive-piezoelectric laminate sensitivity. An optimal ME structure composition was matched. The characterization of a non-resonant current sensor showed that in the operation range to 5 A, the sensor had a sensitivity of 0.34 V/A, non-linearity less than 1% and for a resonant current sensor in the same operation range, the sensitivity was of 0.53 V/A, non-linearity less than 0.5%.
One of the new materials that have recently attracted wide attention of researchers are magnetoelectric (ME) composites. Great interest in these materials is due to their properties associated with the transformation of electric polarization/magnetization under the influence of external magnetic/electric fields and the possibility of their use to create new devices. In the proposed review, ME magnetic field sensors based on the widely used structures Terfenol—PZT/PMN-PT, Metglas—PZT/PMN-PT, and Metglas—Lithium niobate, among others, are considered as the first applications of the ME effect in technology. Estimates of the parameters of ME sensors are given, and comparative characteristics of magnetic field sensors are presented. Taking into account the high sensitivity of ME magnetic field sensors, comparable to superconducting quantum interference devices (SQUIDs), we discuss the areas of their application.
Ever-evolving advances in flexible magnetic sensors are promising to fuel technological developments in the fields of touchless human–machine interaction, implantable medical diagnosis, and magnetoreception for artificial intelligence. However, the realization of highly flexible and extremely sensitive magnetic sensors remains a challenge. Here, we report a cost-effective, flexible, and ultra-sensitive heterostructural magnetoelectric (ME) sensor consisting of piezoelectric Pb(Zr0.52Ti0.48)O3 (PZT) thick films and Metglas foils. The flexible sensor exhibits a strong ME coefficient of 19.3 V cm−1 Oe−1 at low frequencies and 280.5 V cm−1 Oe−1 at resonance due to the exceptionally high piezoelectric coefficient d33 ∼ 72 pC N−1 of the constituent PZT thick films. The flexible ME sensor possesses not only ultrahigh sensitivities of 200 nT at low frequencies and 200 pT at resonance but also shows an excellent mechanical endurance. Through 5000 bending cycles (radii of ∼1 cm), the sensors showed no fatigue-induced performance degradation. This ultrasensitive flexible sensor provides a platform capable of sensing and responding to external magnetic fields and will find applications in soft robotics, wearable healthcare monitoring, and consumer electronics.
The article is devoted to the theoretical and experimental study of a magnetoelectric (ME) current sensor based on a gradient structure. It is known that the use of gradient structures in magnetostrictive-piezoelectric composites makes it possible to create a self-biased structure by replacing an external magnetic field with an internal one, which significantly reduces the weight, power consumption and dimensions of the device. Current sensors based on a gradient bidomain structure LiNbO3 (LN)/Ni/Metglas with the following layer thicknesses: lithium niobate—500 μm, nickel—10 μm, Metglas—29 μm, operate on a linear section of the working characteristic and do not require the bias magnetic field. The main characteristics of a contactless ME current sensor: its current range measures up to 10 A, it has a sensitivity of 0.9 V/A, its current consumption is not more than 2.5 mA, and its linearity is maintained to an accuracy of 99.8%. Some additional advantages of a bidomain lithium niobate-based current sensor are the increased sensitivity of the device due to the use of the bending mode in the electromechanical resonance region and the absence of a lead component in the device.
The article discusses the physical foundations of the application of the linear magnetoelectric (ME) effect in composites for devices in the low-frequency range, including the electromechanical resonance (EMR) region. The main theoretical expressions for the ME voltage coefficients in the case of a symmetric and asymmetric composite structure in the quasi-static and resonant modes are given. The area of EMR considered here includes longitudinal, bending, longitudinal shear, and torsional modes. Explanations are given for finding the main resonant frequencies of the modes under study. Comparison of theory and experimental results for some composites is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.