We study the collective dynamics of modular networks consisting of map-based neurons which generate irregular spike sequences. Three types of intramodule topology are considered: a random Erdös-Rényi network, a small-world Watts-Strogatz network, and a scale-free Barabási-Albert network. The interaction between the neurons of different modules is organized by relatively sparse connections with time delay. For all the types of the network topology considered, we found that with increasing delay two regimes of module synchronization alternate with each other: inphase and antiphase. At the same time, the average rate of collective oscillations decreases within each of the time-delay intervals corresponding to a particular synchronization regime. A dual role of the time delay is thus established: controlling a synchronization mode and degree and controlling an average network frequency. Furthermore, we investigate the influence on the modular synchronization by other parameters: the strength of intermodule coupling and the individual firing rate.
The impact of connectivity and individual dynamics on the basin stability of the burst synchronization regime in small-world networks consisting of chaotic slow-fast oscillators is studied. It is shown that there are rewiring probabilities corresponding to the largest basin stabilities, which uncovers a reason for finding small-world topologies in real neuronal networks. The impact of coupling density and strength as well as the nodal parameters of relaxation or excitability are studied. Dynamic mechanisms are uncovered that most strongly influence basin stability of the burst synchronization regime.
The COVID-19 crisis has exposed some of the most pressing challenges affecting healthcare and highlighted the benefits that robust integration of digital and AI technologies in the healthcare setting may bring. Although medical solutions based on AI are growing rapidly, regulatory issues and policy initiatives including ownership and control of data, data sharing, privacy protection, telemedicine, and accountability need to be carefully and continually addressed as AI research requires robust and ethical guidelines, demanding an update of the legal and regulatory framework all over the world. Several recently proposed regulatory frameworks provide a solid foundation but do not address a number of issues that may prevent algorithms from being fully trusted. A global effort is needed for an open, mature conversation about the best possible way to guard against and mitigate possible harms to realize the potential of AI across health systems in a respectful and ethical way. This conversation must include national and international policymakers, physicians, digital health and machine learning leaders from industry and academia. If this is done properly and in a timely fashion, the potential of AI in healthcare will be realized.
Effects of the slowly varying control parameters on bifurcations of the equilibria and limit cycles have been previously studied in detail. In this paper, the concept of dynamic bifurcations is extended to chaotic phenomena. We consider this problem for a Lorenz-type map. As the control parameter passes through a critical value, the dynamic boundary crisis of a chaotic attractor takes place. We discover and analyze the effects of delayed exit from the chaotic region and non-exponential decay of the number of surviving trajectory points. The property of the delay increase with increasing rate of the control parameter change has also been demonstrated and explained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.