We investigate via a conjugate duality approach general nonlinear minmax location problems formulated by means of an extended perturbed minimal time function, necessary and sufficient optimality conditions being delivered together with characterizations of the optimal solutions in some particular instances. A parallel splitting proximal point method is employed in order to numerically solve such problems and their duals. We present the computational results obtained in matlab on concrete examples, successfully comparing these, where possible, with earlier similar methods from the literature. Moreover, the dual employment of the proximal method turns out to deliver the optimal solution to the considered primal problem faster than the direct usage on the latter. Since our technique successfully solves location optimization problems with large data sets in high dimensions, we envision its future usage on big data problems arising in machine learning.Keywords Gauge (Minkowski) function · Minimal time function · Minmax multifacility location problem · Sylvester problem · Apollonius problem · Proximal point algorithm · Epigraphical projection · Projection operator · Machine learning 1 PreliminariesIn this paper we investigate nonlinear minmax location problems that are generalizations of the classical Sylvester problem in location theory-not to be confused with Sylvester's line
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.