This study presents the results of experimental studies and mathematical modeling of the process of vesicular structure formation from phospholipids under the influence of mechanisms of the discrete impulse input of energy (DIIE). The possibility of using this method for increasing the productivity of the process of obtaining vesicles from phospholipids is shown. Moreover, the use of the properties of lipid nanostructures obtained by the DIIE method for the composition of products of special therapeutic nutrition is proposed. The DIIE effect was realized in a flowing rotary-pulsation apparatus of a cylindrical type. The effectiveness of using this type of equipment and the high level of mechanical and physicochemical effects on the dispersed system with phospholipids are established. The results of the studies of the effect of certain regime parameters (such as initial temperature, material concentration, and angular velocity of the rotor) on the analysis of the aqueous suspension of phospholipids on the size distribution of the formed particles are presented. The heat-technological parameters of the process were selected for obtaining particles having an average diameter of up to 500 nm. The possibility of predicting the properties of the formed phospholipids structures obtained by the proposed treatment in a wide range of regime parameters is shown. For the simulation, a hybrid functional Petri net was used, which made it possible to combine the initial thermal technological conditions of the process (such as temperature and material concentration) and the characteristics of the process equipment (such as type of DIIE activator and rotor speed) in the mathematical model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.