As known, the modulus method is one of the most powerful research tools in the theory of mappings. Distortion of modulus has an important role in the study of conformal and quasiconformal mappings, mappings with bounded and finite distortion, mappings with finite length distortion, etc. In particular, an important fact is the lower distortion of the modulus under mappings. Such relations are called inverse Poletsky inequalities and are one of the main objects of our study. The use of these inequalities is fully justified by the fact that the inverse inequality of Poletsky is a direct (upper) inequality for the inverse mappings, if there exist. If the mapping has a bounded distortion, then the corresponding majorant in inverse Poletsky inequality is equal to the product of the maximum multiplicity of the mapping on its dilatation. For more general classes of mappings, a similar majorant is equal to the sum of the values of outer dilatations over all preimages of the fixed point. It the class of quasiconformal mappings there is no significance between the inverse and direct inequalities of Poletsky, since the upper distortion of the modulus implies the corresponding below distortion and vice versa. The situation significantly changes for mappings with unbounded characteristics, for which the corresponding fact does not hold. The most important case investigated in this paper refers to the situation when the mappings have an unbounded dilatation. The article investigates the local and boundary behavior of mappings with branching that satisfy the inverse inequality of Poletsky with some integrable majorant. It is proved that mappings of this type are logarithmically Holder continuous at each inner point of the domain. Note that the Holder continuity is slightly weaker than the classical Holder continuity, which holds for quasiconformal mappings. Simple examples show that mappings of finite distortion are not Lipschitz continuous even under bounded dilatation. Another subject of research of the article is boundary behavior of mappings. In particular, a continuous extension of the mappings with the inverse Poletsky inequality is obtained. In addition, we obtained the conditions under which the families of these mappings are equicontinuous inside and at the boundary of the domain. Several cases are considered: when the preimage of a fixed continuum under mappings is separated from the boundary, and when the mappings satisfy normalization conditions. The text contains a significant number of examples that demonstrate the novelty and content of the results. In particular, examples of mappings with branching that satisfy the inverse Poletsky inequality, have unbounded characteristics, and for which the statements of the basic theorems are satisfied, are given.
УДК 517.5Вивчаються рiвняння типу Бельтрамi з двома заданими комплексними характеристиками. За пе вних умов на комплекснi коефiцiєнти отримано теореми про iснування гомеоморфних <em>ACL</em>-розв’язкiв цього рiвняння. Крiм того, за деяких вiдносно слабких умов доведено теореми про iснування вiдповiдних неперервних <em>ACL</em>-розв’язкiв, якi є логарифмiчно гельдеровими в заданiй областi.
Е.А. Севостьянов (Житомирский государственный университет имени Ивана Франко) Є.О. Севостьянов (Житомирський державний унiверситет iменi Iвана Франка) E.A. Sevost'yanov (Zhytomyr Ivan Franko State University) О граничном продолжении отображений римановых поверхностей в терминах простых концов Про межове продовження вiдображень рiманових поверхонь в термiнах простих кiнцiв On boundary extension of mappings of Riemannian surfaces in terms of prime ends Аннотация В статье исследованы негомеоморфные отображения римановых поверхностей класса Соболева. Доказано, что при определённых условиях эти отображения продолжаются на границу заданной области в терминах простых концов.У статтi дослiджено негомеоморфнi вiдображення рiманових поверхонь класу Соболєва. Доведено, що за певних умов вказанi вiдображення казано, что при определённых условиях эти отображения продолжаются продовжуються на межу заданої областi в термiнах простих кiнцiв.In the present paper, we investigate non-homeomorphic mappings of Riemannian surfaces of Sobolev class. We have obtained some estimates of distortion of moduli of families of curves. We have proved that, under some conditions, these mappings have a continuous extension to a boundary of a domain in terms of prime ends. ВведениеВ работах [1] и [2] получены некоторые важные результаты о граничном поведении Соболевских гомеоморфизмов на римановых поверхностях. В [1] рассмотрен случай областей, локально связных на своей границе, в то время как в [2] рассмотрена ситуация, когда природа областей может быть более сложной. В последнем случае отображения могут и не иметь поточечного граничного продолжения. Тем не менее, конструкция простых концов, введённая Каратеодори и использованная здесь, позволяет интерпретировать границу области более удачным способом. Этот способ позволяет сформулировать результаты о непрерывном граничном продолжении отображений, в то время как непрерывность следует понимать в более абстрактной форме.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.