Three peptidases are responsible for the proteolytic processing of both nuclearly and mitochondrially encoded precursor polypeptides targeted to the various subcompartments of the mitochondria. Mitochondrial processing peptidase (MPP) cleaves the vast majority of mitochondrial proteins, while inner membrane peptidase (IMP) and mitochondrial intermediate peptidase (MIP) process specific subsets of precursor polypeptides. All three enzymes are structurally and functionally conserved across species, and their human homologues begin to be recognized as potential players in mitochondrial disease.
Friedreich ataxia is a severe autosomal-recessive disease characterized by neurodegeneration, cardiomyopathy and diabetes, resulting from reduced synthesis of the mitochondrial protein frataxin. Although frataxin is ubiquitously expressed, frataxin deficiency leads to a selective loss of dorsal root ganglia neurons, cardiomyocytes and pancreatic beta cells. How frataxin normally promotes survival of these particular cells is the subject of intense debate. The predominant view is that frataxin sustains mitochondrial energy production and other cellular functions by providing iron for heme synthesis and iron-sulfur cluster (ISC) assembly and repair. We have proposed that frataxin not only promotes the biogenesis of iron-containing enzymes, but also detoxifies surplus iron thereby affording a critical anti-oxidant mechanism. These two functions have been difficult to tease apart, however, and the physiologic role of iron detoxification by frataxin has not yet been demonstrated in vivo. Here, we describe mutations that specifically impair the ferroxidation or mineralization activity of yeast frataxin, which are necessary for iron detoxification but do not affect the iron chaperone function of the protein. These mutations increase the sensitivity of yeast cells to oxidative stress, shortening chronological life span and precluding survival in the absence of the anti-oxidant enzyme superoxide dismutase. Thus, the role of frataxin is not limited to promoting ISC assembly or heme synthesis. Iron detoxification is another function of frataxin relevant to anti-oxidant defense and cell longevity that could play a critical role in the metabolically demanding environment of non-dividing neuronal, cardiac and pancreatic beta cells.
We have investigated the mechanism of frataxin, a conserved mitochondrial protein involved in iron metabolism and neurodegenerative disease. Previous studies revealed that the yeast frataxin homologue (mYfh1p) is activated by Fe(II) in the presence of O 2 and assembles stepwise into a 48-subunit multimer (␣ 48 ) that sequesters >2000 atoms of iron in 2-4-nm cores structurally similar to ferritin iron cores. Here we show that mYfh1p assembly is driven by two sequential iron oxidation reactions: A ferroxidase reaction catalyzed by mYfh1p induces the first assembly step (␣ 3 ␣ 3 ), followed by a slower autoxidation reaction that promotes the assembly of higher order oligomers yielding ␣ 48 . Depending on the ionic environment, stepwise assembly is associated with accumulation of 50 -75 Fe(II)/subunit. Initially, this Fe(II) is loosely bound to mYfh1p and can be readily mobilized by chelators or made available to the mitochondrial enzyme ferrochelatase to synthesize heme. Transfer of mYfh1p-bound Fe(II) to ferrochelatase occurs in the presence of citrate, a physiologic ferrous iron chelator, suggesting that the transfer involves an intermolecular interaction. If mYfh1p-bound Fe(II) is not transferred to a ligand, iron oxidation, and mineralization proceed to completion, Fe(III) becomes progressively less accessible, and a stable iron-protein complex is formed. Iron oxidation-driven stepwise assembly is a novel mechanism by which yeast frataxin can function as an iron chaperone or an iron store.
Friedreich ataxia (FRDA) is an autosomal recessive degenerative disease caused by insufficient expression of frataxin (FXN), a mitochondrial iron-binding protein required for Fe-S cluster assembly. The development of treatments to increase FXN levels in FRDA requires elucidation of the steps involved in the biogenesis of functional FXN. The FXN mRNA is translated to a precursor polypeptide that is transported to the mitochondrial matrix and processed to at least two forms, FXN Friedreich ataxia (FRDA) 2 (OMIM number 229300) is an autosomal recessive disease with an estimated incidence of 1:40,000. Most FRDA patients are apparently healthy at birth and during the first 5-10 years of life; then their gait becomes increasingly unsteady and wide-based and their voluntary movements uncoordinated. Many patients develop hypertrophic cardiomyopathy as well as diabetes, muscle weakness, and skeletal deformities. Although cognitive functions remain largely intact during disease progression, patients develop significant communication difficulties due to dysarthria, which is often compounded by vision and hearing loss. The majority of patients eventually become wheelchair-bound and dependent on others for most daily activities. Cardiac failure is a frequent cause of death at a young age (1).The FRDA locus encodes a mitochondrial protein designated frataxin (FXN), which is expressed at much lower levels in FRDA patients compared with normal individuals (2). In most patients, FXN deficiency results from the presence of an expanded GAA repeat in the first intron of the FRDA gene (2) that causes transcriptional silencing (reviewed in Ref.3). Although FXN is ubiquitously expressed, certain cells (dorsal root ganglia neurons, cardiomyocytes, and pancreatic beta cells) are exquisitely sensitive to frataxin depletion, and the degenerative loss of these particular cells accounts for the major clinical aspects of FRDA (1).Extensive biochemical studies have shown that frataxins across species are conserved iron-binding proteins that can either provide iron for Fe-S cluster assembly and heme synthesis or store iron as a stable mineral (reviewed in Ref. 4). The loss of these properties accounts for impaired iron utilization and increased iron toxicity linked to frataxin deficiency in the mitochondria of such diverse organisms as Saccharomyces cerevisiae, Drosophila, mouse, and humans (5-8). In humans, the mitochondrial alterations caused by FXN deficiency lead to tissue-specific changes in various cellular pathways involved in antioxidant, metabolic, and inflammatory responses, thereby amplifying the pathophysiology of FRDA and promoting disease progression (9 -13).
Frataxin is a conserved mitochondrial protein required for iron homeostasis. We showed previously that in the presence of ferrous iron recombinant yeast frataxin (mYfh1p) assembles into a regular multimer of approximately 1.1 MDa storing approximately 3000 iron atoms. Here, we further demonstrate that mYfh1p and iron form a stable hydrophilic complex that can be detected by either protein or iron staining on nondenaturing polyacrylamide gels, and by either interference or absorbance measurements at sedimentation equilibrium. The molecular mass of this complex has been refined to 840 kDa corresponding to 48 protein subunits and 2400 iron atoms. Solution density measurements have determined a partial specific volume of 0.58 cm(3)/g, consistent with the amino acid composition of mYfh1p and the presence of 50 Fe-O equivalents per subunit. By dynamic light scattering, we show that the complex has a radius of approximately 11 nm and assembles within 2 min at 30 degrees C when ferrous iron, not ferric iron or other divalent cations, is added to mYfh1p monomer at pH between 6 and 8. Iron-rich granules with diameter of 2-4 nm are detected in the complex by scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. These findings support the hypothesis that frataxin is an iron storage protein, which could explain the mitochondrial iron accumulation and oxidative damage associated with frataxin defects in yeast, mouse, and humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.