The article substantiates the relevance of adaptive learning of students in the modern information society, reveals the essence of such concepts as “adaptability” and “adaptive learning system”. It is determined that a necessary condition for adaptive education is the criterion of an adaptive learning environment that provides opportunities for advanced education, development of key competencies, formation of a flexible personality that is able to respond to different changes, effectively solve different problems and achieve results. The authors focus on the technical aspect of adaptive learning. Different classifications of adaptability are analyzed. The approach to the choice of adaptive learning tools based on the characteristics of the product quality model stated by the standard ISO / IEC 25010 is described. The following criteria for the selecting adaptive learning tools are functional compliance, compatibility, practicality, and support. By means of expert assessment method there were identified and selected the most important tools of adaptive learning, namely: Acrobatiq, Fishtree, Knewton (now Wiliy), Lumen, Realize it, Smart Sparrow (now Pearson). Comparative tables for each of the selected tools of adaptive learning according to the indicators of certain criteria are given.
The study of three-dimensional graphics is an important part of a school course of informatics. This is a consequence of the fact that in today's world it is impossible to imagine a sphere of human activity where 3D modeling and 3D printing technologies are not used. At the same time, issues related to the study of this field of information technology at school are unfortunately not sufficiently outlined. Students' perception of the complex interfaces of the corresponding graphic software is also a problematic point. At the same time, the degree of their impact on educational activity has not been studied at a sufficient level. Considering that the complexity of organizing the interaction between the user and the control elements is inherent in the vast majority of graphic 3D programs, the purpose of the exploratory research was to study this very issue only in the context of the educational learning process. When choosing software for testing, the following selection criteria were followed: the software must be distributed on the basis of the open GPL license, and online services must be able to be freely registered and used in work; it is necessary that graphic complexes of three-dimensional graphics satisfy sufficiently democratic system requirements of school computers; the presence of a large number of localizations is also important, and in terms of functionality, 3D programs should approach similar leading commercial software tools and corresponding online services. In the work, considerable attention was paid to the description of research planning. In particular, it was indicated how the sample of respondents was formed and the main approaches to testing program interfaces in the context of their use in the educational process were revealed. An online tool for testing - UsabilityHub.com - is described separately. The obtained data are described and supplemented by specialized graphic heat maps of clicks. As a result, the data is analyzed in detail, it is indicated that the obtained results of the exploration research are an important basis for conducting further scientific research related to this topic and will allow better investigation of problematic issues. The authors also formulate recommendations for the study of three-dimensional graphics editors in a school course of informatics and note methodological points that teachers should pay attention to when preparing for classes.
3D graphics are one of the crucial development trends of modern digital technologies. Engineering and manufacturing, architecture, design, cinematography, education, and the game industry are an incomplete list of industries where it is actively used. Specialists in 3D graphics are in high demand in the labor market. Their proper training presupposes high-quality knowledge of geometrical sciences, in particular – constructive geometry. Note that constructive geometry is an integral part of modern school mathematics education. That is why, even in the conditions of the school, the teacher should skillfully apply the demonstration capabilities of three-dimensional graphics. It will also encourage students of a comprehensive school to apply knowledge of constructive geometry in practice in the area of 3D modeling. This approach will make it possible to demonstrate the importance and interconnectedness of knowledge in geometry and computer science. Therefore, the article reveals the importance of interdisciplinary connections between the specified disciplines in the context of research, demonstration, and application aspects. In particular, the nuances of using the GeoGebra dynamic geometry complex for conducting computational experiments and creating spatial models based on tasks from a school spatial geometry course are described. After all, modern capabilities of software tools make it possible to demonstrate in real time all the transformations that took place during drawing modeling on the picture plane. The importance of the applied value of constructive geometry for 3D modeling reveals based on examples of solid and polygonal modeling of virtual spatial objects. In particular, the steps of creating a solid model of a pyramid, which is formed by cutting it off with a plane from a regular quadrangular pyramid, are illustrated by the basis of calculations and constructions, which are performed using techniques of constructive geometry. All stages are described and done using the TinkerCAD online modeling service tools. An example of using the Blender program for creating polygonal 3D models is also provided. In particular, the significant aspects of the part modeling process are presented in the example of a task from a drawing textbook. The importance of planimetric constructions in the process of performing high-precision polygonal modeling is also emphasized. The article contains many figures that illustrate the essential stages of modeling. The materials presented can be used to prepare lessons in either mathematics or computer science and can be used to conduct integrated classes that draw on both subjects. Possible prospects for further research on this topic are also presented.
Corpus linguistics is a newly emerging field of study in applied linguistics that deals with construction, processing, and exploitation of text corpora. To date, a high-quality analysis of vast amounts of empirical language data provided by computerized corpora is impossible without computer technologies and relevant statistical methods. Therefore, teaching future philologists to effectively apply statistical computer programs is an important stage in their research training. The article discusses the possibilities of using one of the leading in Western linguistics, but not well-known in Ukraine, software packages for statistical data analysis – R statistical software environment – in the research by future philologists. The paper reveals the advantages and disadvantages of this program in comparison with other similar software packages (SPSS and Statistica) and provides Internet links to R self-learn tutorials. The flexibility and efficacy of R for linguistic research are demonstrated on the example of a statistical analysis of the use of hedges in the corpus of academic speech. For novice philologists to properly understand the peculiarities of conducting a statistical linguistic experiment with R, a detailed description of each stage of the study is provided. The statistical verification of hedges in the speech of students and lecturers was carried out using such statistical methods as the Kolmogorov–Smirnov test and the Mann-Whitney U Test. The article presents the developed algorithms to calculate the specified tests applying the built-in commands and various specialized library functions, created by R user community to enhance the functionality of this statistical software. Each script for statistical calculations in R is accompanied by a detailed description and interpretation of the results obtained. Further study of the issue will involve a number of activities aimed at raising awareness and improving skills of future philologists in using R statistical software, which is important for their professional development as researchers.
The article substantiates the relevance of adaptive learning of students in the modern information society, reveals the essence of such concepts as “adaptability” and “adaptive learning system”. It is determined that a necessary condition for adaptive education is the criterion of an adaptive learning environment that provides opportunities for advanced education, development of key competencies, formation of a flexible personality that is able to respond to different changes, effectively solve different problems and achieve results. The authors focus on the technical aspect of adaptive learning. Different classifications of adaptability are analyzed. The approach to the choice of adaptive learning tools based on the characteristics of the product quality model stated by the standard ISO / IEC 25010 is described. The following criteria for the selecting adaptive learning tools are functional compliance, compatibility, practicality, and support. By means of expert assessment method there were identified and selected the most important tools of adaptive learning, namely: Acrobatiq, Fishtree, Knewton (now Wiliy), Lumen, Realize it, Smart Sparrow (now Pearson). Comparative tables for each of the selected tools of adaptive learning according to the indicators of certain criteria are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.