Improving the performance of microwave devices can be achieved both through the use of a fundamentally new element base, and through the use of new circuit designs. In this respect, the direction of use of the reactive properties of transistors as well as transistor structures with negative resistance for the construction of information-measuring systems and operating and computing devices of the microwave range is promising in this respect. In order to confirm the proposed methods, it is necessary to compare the results of the experimental studies using the proposed methods and means of measuring the W-parameters of real potentially unstable four-poles. As such four-poles it is proposed to use bipolar and transistors with a wide range of frequencies of potential instability. The paper develops mathematical models of W-parameters of such structures and evaluates their parameters in the frequency range. The active four-pole is a transistor model. Its W parameters can be determined either experimentally - for specific conditions or calculated - by using a physical transistor replacement circuit. In most cases, the calculation path is more acceptable because it allows to obtain analytical expressions for the four-pole, it is important in the analysis of the influence of various factors on the characteristics of the scheme under study. The inertial properties of the transistor are already manifested at relatively low frequencies and must be taken into account in practically the entire operating range of the transistor. The theoretical model holds up to frequencies f 2fт (where ft is the limit frequency) [1,3]. At higher frequencies, it is necessary to consider the parasitic reactive parameters of real transistors, first of all, the inductance of the terminals. A physically T-equivalent equivalent transistor replacement scheme was proposed by Pritchard in a simplified version [4]. It has several varieties, differing in the configuration of the circuit consisting of the resistance of the base material and the capacity of the collector junction. If we carefully consider and compare the T and U-shaped circuits of the transistor substitution, it can be noticed that they differ only in the configuration of their inne r part - the theoretical model. At high frequencies P and T, such circuits are not exact mutual equivalents. This is due to the approximation used in the transition from one circuit to another. However, the frequency characteristics of the circuits are very close. Each of them models the processes in the transistor with approximately the same accuracy, and in this sense they are equivalent.
One of the main features of the current stage of scientific and technological progress is the wider use of microelectronics in various sectors of the economy, which is constantly growing. The role of microelectronics in the development of social production is determined by its almost unlimited possibilities in solving various problems in all sectors of the economy, its profound impact on the culture and life of modern man. Particular attention is now paid to the introduction of microprocessors that solve the problem of automation of control of mechanisms, devices and equipment. Adapting the microprocessor to the conditions of a particular task is mostly done by developing appropriate software, which is then stored in program memory. Hardware adaptation in most cases is performed by connecting the necessary integrated circuits and I / O that meet the problem to be solved. In the given work the microprocessor system of regulation of turns of the collector motor of a direct current is developed. The microprocessor system is developed on the basis of the KM1816 BE 51 microprocessor using a DAC. The microprocessor program changes the engine speed in the range from 1000 to 3000 rpm. In microprocessor technology there is an independent class of large integrated circuits (BIS) - single-chip microcomputers (OMEOM), which are designed to "intellectualize" devices for various purposes. The architecture of single-chip microcomputers is the result of the evolution of microprocessors and microprocessor systems, due to the desire to significantly reduce their hardware costs and cost. Typically, these goals are achieved both by increasing the integration of the BIS and by finding a compromise between cost, hardware costs and technical characteristics of the OMEOM. Development of control systems on single-chip microcomputers is one of the most promising areas in the field of process automation, control and management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.