The mass application of FDM technology is slowed down due to the difficulty of selecting 3D printing parameters in order to manufacture an article with the required characteristics. This paper reports a study into the impact of 3D printing parameters (temperature, print speed, layer height) on mechanical parameters (strength, elasticity module), as well as on the accuracy of printing and roughness of the surface of a specimen based on thermoplastic (PLA plastic). Several batches of specimens were fabricated for this study in accordance with ASTM D638 and ASTM D695, which were tested for tension, geometric accuracy, and roughness. Based on the experimental data, regression analysis was carried out and the functional dependences of the strength, elasticity module, printing precision, roughness of a surface on 3D printing parameters (temperature, speed, thickness of the layer) were constructed. In addition, the derived mathematical model underlying a method of non-linear programming has established such printing parameters that could provide for the required properties of a structure. The analytical dependences reported in the current work demonstrate a high enough determination factor in the examined range of parameters. Using functional dependences during the design phase makes it possible to assess the feasibility of its manufacture with the required properties, reduce the time to work out the process of printing it, and give recommendations on the technological parameters of 3D printing. The recommendations from this study could be used to make PLA-plastic articles for various purposes with the required properties
The composite structures in the aerospace industry for in recent decades are widely applied however, at the beginning of the 21st century composites are growing rapidly. The largest companies in the aerospace industry are increasing the volume of composites application of in the structures, and nowadays the volume of composites reaches 50%. The different elements of aircraft and even highly loaded structures such as spars, ribs, skin, etc., are currently made from composites. First of all, this is due to the possibility of a significant reduction in the weight of the structure, as well as a decreasing in production costs. The advanced technologies in the engineering software allows to solute different complex problems. One of the main direct of research in the composites is optimization of composite structure due to improving the relative strength and relative stiffness of the composite structure, and improving the efficiency of manufacturing processes. There are a lot of methods of optimizations but currently the topological optimization is the most conceptual and forward-looking method. The main goal of the article is to analyze and estimate the approach for designing wing rib with symmetric laminated plates with the different fiber orientation based on the topology optimization. The following tasks were solved for this: firstly, a topological optimization model was determined. This model was based on maximum stiffness with a specified volume constraint is established. The next step was optimization by the solid isotropic material with penalization (SIMP) model and sensitivity filtering technique; as a result of optimization the topological structures of wing rib with different fibre orientations were obtained. The topological structure and stiffness of the wing rib depend on the fibre orientation. Finally, the corresponding morphing analysis of wing rib with laminated plates is implemented by adopting ANSYS, which verified the anti-deforming capability of topology structure and illustrated the feasibility for designing the wing rib. The result shows that the maximum deformation of optimized structure is 1.57mm, whereas the maximum deformation of the un-optimized structure is 2.02 mm. Under the condition of the same material removals, the optimized structure can decrease by more than 20% deformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.