Purpose The advantage of prone setup compared with supine for left-breast radiotherapy is controversial. We evaluate the dosimetric gain of prone setup and aim to identify predictors of the gain. Methods Left-sided breast cancer patients who had dual computed tomography (CT) planning in prone free breathing (FB) and supine deep inspiration breath-hold (DiBH) were retrospectively identified. Radiation doses to heart, lungs, breasts, and tumor bed were evaluated using the recently developed mean absolute dose deviation (MADD). MADD measures how widely the dose delivered to a structure deviates from a reference dose specified for the structure. A penalty score was computed for every treatment plan as a weighted sum of the MADDs normalized to the breast prescribed dose. Changes in penalty scores when switching from supine to prone were assessed by paired t-tests and by the number of patients with a reduction of the penalty score (i.e., gain). Robust linear regression and fractional polynomials were used to correlate patients’ characteristics and their respective penalty scores. Results Among 116 patients identified with dual CT planning, the prone setup, compared with supine, was associated with a dosimetric gain in 72 (62.1%, 95% CI: 52.6–70.9%). The most significant predictors of a gain with the prone setup were the breast depth prone/supine ratio (>1.6), breast depth difference (>31 mm), prone breast depth (>77 mm), and breast volume (>282 mL). Conclusion Prone compared with supine DiBH was associated with a dosimetric gain in 62.1% of our left-sided breast cancer patients. High pendulousness and moderately large breast predicted for the gain.
Restricted mean survival time (RMST), recommended for reporting survival, lacks a tool to evaluate multilevel factors. The potential of the Gini’s mean difference of RMSTs (Δ) is explored in a comparison of a lymph node ratio-based classification (LNRc) versus a number-based classification (ypN) applied to stage II/III breast cancer patients who received neoadjuvant chemotherapy and underwent axillary dissection. Number of positive nodes ( npos) classified patients into ypN0, npos = 0, ypN1, npos = [1,3], ypN2, npos = [4,9], and ypN3, npos ⩾ 10. Ratio npos/( number of nodes examined) of 0, (0,0.20], (0.20,0.65], and >0.65, classified patients into Lnr0 to Lnr3, respectively. Unadjusted and Cox-adjusted RMSTs were computed for the ypN and LNRc’s. At a follow-up time horizon of 72 months for 114 node-negative and 254 node-positive patients, unadjusted ypN0-ypN3 RMSTs were 62.4-41.4 months, Δ = 11.9 months (95%CI: 7.4-16.9), and Lnr0-Lnr3 62.4 to 36.3 months, Δ = 14.0 months (95%CI: 10.1-18.1). Cox models’ ypN1-ypN3 hazard ratios were 1.81-3.30, and Lnr1-Lnr3 1.52-4.39. Δ from Cox-fitted survival were ypN 8.1 months (95%CI: 5.9-10.5), LNRc 10.5 months (95%CI: 8.4-12.8). In conclusion, Gini’s mean difference is applicable to well established data in keeping with the literature on LNRc. It provides an alternative view on the improvement gained with a lymph node ratio-classification over using a number-classification.
Prone setup has been advocated to improve organ sparing in whole breast radiotherapy without impairing breast coverage. We evaluate the dosimetric advantage of prone setup for the right breast and look for predictors of the gain. Right breast cancer patients treated in 2010–2013 who had a dual supine and prone planning were retrospectively identified. A penalty score was computed from the mean absolute dose deviation to heart, lungs, breasts, and tumor bed for each patient's supine and prone plan. Dosimetric advantage of prone was assessed by the reduction of penalty score from supine to prone. The effect of patients' characteristics on the reduction of penalty was analyzed using robust linear regression. A total of 146 patients with right breast dual plans were identified. Prone compared to supine reduced the penalty score in 119 patients (81.5%). Lung doses were reduced by 70.8%, from 4.8 Gy supine to 1.4 Gy prone. Among patient's characteristics, the only significant predictors were the breast volumes, but no cutoff could identify when prone would be less advantageous than supine. Prone was associated with a dosimetric advantage in most patients. It sets a benchmark of achievable lung dose reduction.Trial registration: ClinicalTrials.gov NCT02237469, HUGProne, September 11, 2014, retrospectively registered.
Background Long-term prospective patient-reported outcomes (PRO) after breast cancer adjuvant radiotherapy is scarce. TomoBreast compared conventional radiotherapy (CR) with tomotherapy (TT), on the hypothesis that TT might reduce lung-heart toxicity. Methods Among 123 women consenting to participate, 64 were randomized to CR, 59 to TT. CR delivered 50 Gy in 25 fractions/5 weeks to breast/chest wall and regional nodes if node-positive, with a sequential boost (16 Gy/8 fractions/1.6 weeks) after lumpectomy. TT delivered 42 Gy/15 fractions/3 weeks to breast/chest wall and regional nodes if node-positive, 51 Gy simultaneous-integrated-boost in patients with lumpectomy. PRO were assessed using the European Organization for Research and Treatment of Cancer questionnaire QLQ-C30. PRO scores were converted into a symptom-free scale, 100 indicating a fully symptom-free score, 0 indicating total loss of freedom from symptom. Changes of PRO over time were analyzed using the linear mixed-effect model. Survival analysis computed time to > 10% PRO-deterioration. A post-hoc cardiorespiratory outcome was defined as deterioration in any of dyspnea, fatigue, physical functioning, or pain. Results At 10.4 years median follow-up, patients returned on average 9 questionnaires/patient, providing a total of 1139 PRO records. Item completeness was 96.6%. Missingness did not differ between the randomization arms. The PRO at baseline were below the nominal 100% symptom-free score, notably the mean fatigue-free score was 64.8% vs. 69.6%, pain-free was 75.4% vs. 75.3%, and dyspnea-free was 84.8% vs. 88.5%, in the TT vs. CR arm, respectively, although the differences were not significant. By mixed-effect modeling on early ≤2 years assessment, all three scores deteriorated, significantly for fatigue, P ≤ 0.01, without effect of randomization arm. By modeling on late assessment beyond 2 years, TT versus CR was not significantly associated with changes of fatigue-free or pain-free scores but was associated with a significant 8.9% improvement of freedom from dyspnea, P = 0.035. By survival analysis of the time to PRO deterioration, TT improved 10-year survival free of cardiorespiratory deterioration from 66.9% with CR to 84.5% with TT, P = 0.029. Conclusion Modern radiation therapy can significantly improve long-term PRO. Trial registration Trial registration number ClinicalTrials.govNCT00459628, April 12, 2007 prospectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.