In the last 20 years, 3D angiographic imaging proved its usefulness in the context of various clinical applications. However, angiographic images are generally difficult to analyse due to their size and the fact that useful information is easily hidden in noise and artifacts. Therefore, there is an ongoing necessity to provide tools facilitating their visualization and analysis, while vessel segmentation from such images remains a challenging task. This article presents new vessel segmentation and filtering techniques, relying on recent advances in mathematical morphology. In particular, methodological results related to variant mathematical morphology and connected filtering are stated, and involved in an angiographic data processing framework. These filtering and segmentation methods are validated on real and synthetic 3D angiographic data.
Abstract-Connected operators provide well-established solutions for digital image processing, typically in conjunction with hierarchical schemes. In graph-based frameworks, such operators basically rely on symmetric adjacency relations between pixels. In this article, we introduce a notion of directed connected operators for hierarchical image processing, by also considering non-symmetric adjacency relations. The induced image representation models are no longer partition hierarchies (i.e., trees), but directed acyclic graphs that generalize standard morphological tree structures such as component trees, binary partition trees or hierarchical watersheds. We describe how to efficiently build and handle these richer data structures, and we illustrate the versatility of the proposed framework in image filtering and image segmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.