The ecological state of the environment, climatic conditions with pronounced seasonality, variability, anomaly summer heat and regional manifestations of climate change, have a certain negative impact onwell-being, health and comfort of life of the population. To assess climatic comfort of a person, a bioclimatic index (equivalent-effective temperature) was used, which allows to evaluate thermal sensation of a person under a certain combination of meteorological parameters. In this study we used daily observation data (surface temperature, air humidity and wind velocity) at 34 meteorological stations in Ukraine for the period 1990—2020. Analysis and ranging of data, which characterize the thermal bioclimatic conditions, were done. It was found that the weather conditions with apparent temperature of very cold—cold—cool—slightly cool compose about 268 ± 9 (73 %) days per year. Thus, the population of Ukraine experience conditions of physiologically cold stress during the prevalent time of the year. Weather conditions that fall into gradations very cold –(30 ... 23) and cold –(23 ... 12) represent 6 ± 5 (~2 %) and 42 ± 17 (~12 %) days per year respectively. They can consequently cause extreme cold and strong cold stress and have a tendency towards decreasing repeatability. The largest number of days on average across the country have such gradations as slightly cool 0 ... 12 and cool –(12 ... 0), 113 ± 10 (31 %) and 107 ± 8 (29 %) days per year respectively. Slightly cool weather conditions are typical for the warm period of the year, mainly autumn and spring, and partially winter, while cool –(12 ... 0) is more prevalent in winter, autumn and spring seasons. Comfortable and subcomfortable thermal conditions for human with apparent temperature of slightly warm and warm compose on average 96 ± 8 (~26 %) days per year. Comfortable thermal conditions for human on the territory of Ukraine represent about 47 ± 13 (13 %) days per year and are typical for the warm period from April to October, with maximal values in summer: June 10 ± 3, July 17 ± 4 and August 15 ± 4 days per month. A number of days with subcomfortable thermal conditions for human on the territory of Ukraine compose also 48 ± 3 (13 %) days per year. Moreover, for May—September it has almost an equal number of days per month from 7 to 12 with minimal values in April, October and November, about 1—2 days. There is a tendency to increase in the number of days with comfortable thermal conditions for human in summer by 0.2—0.3 days per month for the period 1991—2020. The trend is 0.83 days per year (on average 25—30 days were added each year) for the period 1991—2020. Thus, comfortable climatic conditions for the local population in Ukraine increase during the warm season. However, the frequency of hot apparent temperatures (23 ... 30) has increased, especially during summer period, which can subsequently cause strong and extreme heat stress for humans. In particular years, it was recorded up to 5—19 days per year. For that reason, the climatic conditions of Ukraine have a certain potentially comfortable climatic resource(in June—August): Western region has a minimal climatic resource (23—40 %); Northern region has a sufficient climatic resource (36—53 %); Central region has an optimal climatic resource (40—60 %); Southern region has an optimal climatic resource (40—67 %).
The frequency of extreme heat effects has recently increased in European cities due to climate change. The problem appears to be critical in urban areas where manmade structures significantly alter the temperature balance, thus highlighting the importance of sustainable management and proper inventory of urban green zones. Based on this, the paper provides a case study on using a combination of open-access and low-cost urban greenery inventory methods that could be used by municipal governments and private land managers to estimate the contribution of urban trees to the mitigation of urban heat impacts. The research focuses on the urban greenery inventory of courtyards in high-rise residential districts of the city of Kyiv (Ukraine), aiming to estimate the adapting potential of urban vegetation against heatwaves. Visual and thermal satellite images of Kyiv enabled us to estimate how the density of buildings and greenery is distributed and analyze the surface temperature in residential districts. A UAV thermal imaging survey was made in four selected locations with varying vegetation coverage, followed by leaf-based field instrumental analysis of photosynthetic activity in selected city tree species at hot temperatures. In addition, 16 portable temperature and humidity sensors were installed in shaded and sunlight-exposed areas of the locations in focus to assess the microclimate formation impact of trees in a high-rise residential courtyard. The Ukrainian legislation on the management of green spaces in cities was reviewed to find out whether it promotes the shaping of comfortable microclimates in residential districts; follow-up recommendations were made on how to improve the applicable provisions.
The Kherson, Mykolaiv, Odesa, and Zaporizhzhia oblasts, being adjusted to the coasts of the Black and Azov Seas, are located in the steppe zone and constitute the southern region of Ukraine. The environmental parameters and health indicators of the population of the region are sensitive to the impact of natural and anthropogenic processes (e.g., climate change). An analysis of satellite remote sensing data (NOAA NDVI time series) for the assessment of vegetation condition demonstrates an increase in frequency and duration of drought events in the region during the last few decades. It may have a relation to climate change processes. Data analysis of local meteorological observations over the past 100 years proved alterations of some bioclimatic indexes. The Equivalent Effective Temperature (IEET) increases in winter and summer (due to the increasing repeatability of high anomalous temperatures) and remains stable in spring and autumn seasons. The increasing number and variability of climate anomalies can provoke an increase in cardiovascular and some other diseases in the local population. At the same time, an analysis of the statistical data of health indicators of the population (such as morbidity of digestion, breathing, and the endocrine and circulatory systems) shows a tendency to decrease morbidity (contrary to the indicators of the mountain regions’ population, which have higher values of life expectancy). Interrelations between environmental, climate change, and population health indicators in the Black Sea region are being discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.