The inflammatory responsiveness of phagocytes to exogenous and endogenous stimuli is tightly regulated. This regulation plays an important role in systemic inflammatory response syndromes (SIRSs). In SIRSs, phagocytes initially develop a hyperinflammatory response, followed by a secondary state of hyporesponsiveness, a so-called “tolerance.” This hyporesponsiveness can be induced by endotoxin stimulation of Toll-like receptor 4 (TLR4), resulting in an ameliorated response after subsequent restimulation. This modification of inflammatory response patterns has been described as innate immune memory. Interestingly, tolerance can also be triggered by endogenous TLR4 ligands, such as the alarmins myeloid-related protein 8 (MRP8, S100A8) and MRP14 (S100A9), under sterile conditions. However, signaling pathways that trigger hyporesponsiveness of phagocytes in clinically relevant diseases are only barely understood. Through our work, we have now identified 2 main signaling cascades that are activated during MRP-induced tolerance of phagocytes. We demonstrate that the phosphatidylinositol 3-kinase/AKT/GSK-3β pathway interferes with NF-κB–driven gene expression and that inhibition of GSK-3β mimics tolerance in vivo. Moreover, we identified interleukin-10–triggered activation of transcription factors STAT3 and BCL-3 as master regulators of MRP-induced tolerance. Accordingly, patients with dominant-negative STAT3 mutations show no tolerance development. In a clinically relevant condition of systemic sterile stress, cardiopulmonary bypass surgery, we confirmed the initial induction of MRP expression and the tolerance induction of monocytes associated with nuclear translocation of STAT3 and BCL-3 as relevant mechanisms. Our data indicate that the use of pharmacological JAK-STAT inhibitors may be promising targets for future therapeutic approaches to prevent complications associated with secondary hyporesponsiveness during SIRS.
Recruitment of leukocytes from the blood to sites of inflammation poses a promising target for new diagnostic and therapeutic approaches. We aimed to develop a novel method to non-invasively analyze molecular mechanisms of leukocyte migration in pre-clinical models of inflammation in vivo.Methods: We used the ER-HoxB8 system to transiently immortalize murine myeloid precursors from wildtype and CD18- as well as MRP14-deficient mice. A VLA4α-/- cell line was generated by CRISPR/Cas9-mediated gene editing. We analyzed the migration of wildtype and knockout leukocytes in vivo by optical and nuclear imaging in mice with irritant contact dermatitis, cutaneous granuloma, experimental arthritis and myocardial infarction.Results: Transient immortalization, gene editing and in vivo imaging can be combined to analyze migratory mechanisms of murine leukocytes, even for gene deletions resulting in lethal phenotypes in mice. We reliably confirmed known migratory defects of leukocytes deficient for the adhesion molecules CD18 or VLA4α. Also, using our new method we identified a new role of the most abundant calcium-binding proteins in phagocytes and major alarmins in many inflammatory diseases, MRP8 and MRP14, for transmigration in vivo.Conclusion: We provide a combinatorial approach to rapidly characterize molecular mechanisms of leukocyte recruitment in vivo, with the potential to aid in identification of diagnostic and therapeutic targets in inflammatory pathologies.
The tumor suppressor protein programmed cell death 4 (Pdcd4) has been implicated in the translational regulation of specific mRNAs, however, the identities of the natural Pdcd4 target mRNAs and the mechanisms by which Pdcd4 affects their translation are not well understood. Pdcd4 binds to the eukaryotic translation initiation factor eIF4A and inhibits its helicase activity, which has suggested that Pdcd4 suppresses translation initiation of mRNAs containing structured 5′-untranslated regions. Recent work has revealed a second inhibitory mechanism, which is eIF4A-independent and involves direct RNA-binding of Pdcd4 to the target mRNAs. We have now identified the poly(A)-binding protein (PABP) as a novel direct interaction partner of Pdcd4. The ability to interact with PABP is shared between human and Drosophila Pdcd4, indicating that it has been highly conserved during evolution. Mutants of Pdcd4 that have lost the ability to interact with PABP fail to stably associate with ribosomal complexes in sucrose density gradients and to suppress translation, as exemplified by c-myb mRNA. Overall, our work identifies PABP as a novel functionally relevant Pdcd4 interaction partner that contributes to the regulation of translation by Pdcd4.
The tumor suppressor protein programmed cell death 4 (Pdcd4) is a highly conserved RNA-binding protein that inhibits the translation of specific mRNAs. Here, we have identified the homeobox-interacting protein kinase-2 (Hipk2) mRNA as a novel translational target of Pdcd4. Unlike most other protein kinases Hipk2 is constitutively active after being synthesized by the ribosome and its expression and activity are thought to be mainly controlled by modulation of the half-life of the kinase. Our work provides the first evidence that Hipk2 expression is also controlled on the level of translation. We show that Hipk2 stimulates the translation of its own mRNA and that Pdcd4 suppresses the translation of Hipk2 mRNA by interfering with this auto-regulatory feedback mechanism. We also show that the translation of the related kinase Hipk1 is controlled by a similar feedback loop and that Hipk2 also stimulates the translation of Hipk1 mRNA. Taken together, our work describes a novel mechanism of translational suppression by Pdcd4 and shows for the first time that Hipk2 controls its own synthesis by an auto-regulatory feedback mechanism. Furthermore, the effect of Hipk2 on the translation of Hipk1 RNA suggests that Hipk2 and Pdcd4 can act in similar manner to control the translation of other mRNAs.
The proinflammatory alarmins S100A8 and S100A9 are among the most abundant proteins in neutrophils and monocytes but are completely silenced after differentiation to macrophages. The molecular mechanisms of the extraordinarily dynamic transcriptional regulation of S100a8 and S100a9 genes, however, are only barely understood. Using an unbiased genome-wide CRISPR/Cas9 knockout based screening approach in immortalized murine monocytes we identified the transcription factor C/EBPδ as a central regulator of S100a8 and S100a9 expression. We showed that S100A8/A9 expression and thereby neutrophil recruitment and cytokine release were decreased in C/EBPδ KO mice in a mouse model of acute lung inflammation. S100a8 and S100a9 expression was further controlled by the C/EBPδ-antagonists ATF3 and FBXW7. We confirmed the clinical relevance of this regulatory network in subpopulations of human monocytes in a clinical cohort of cardiovascular patients. Moreover, we identified specific C/EBPδ-binding sites within S100a8 and S100a9 promoter regions, and demonstrated that C/EBPδ-dependent JMJD3-mediated demethylation of H3K27me3 is indispensable for their expression. Overall, our work uncovered C/EBPδ as a novel regulator of S100a8 and S100a9 expression. Therefore, C/EBPδ represents a promising target for modulation of inflammatory conditions that are characterised by S100a8 and S100a9 overexpression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.