Identifying an electrical biomarker of epileptogenicity would facilitate epilepsy surgery. Using time-frequency analysis during the pre-ictal-to-ictal transition, Grinenko et al. identify a fingerprint of the epileptogenic zone, which they validate through machine learning. The time-frequency pattern is consistent with a pathophysiological role of fast inhibitory interneurons in seizure onset.
Objective: Ultra-high-field 7-Tesla (7T) magnetic resonance imaging (MRI) offers increased signal-to-noise and contrast-to-noise ratios, which may improve visualization of cortical malformations. We aim to assess the clinical value of in vivo structural 7T MRI and its post-processing for the noninvasive identification of epileptic brain lesions in patients with pharmacoresistant epilepsy and nonlesional 3T MRI who are undergoing presurgical evaluation. Methods: Sixty-seven patients were included who had nonlesional 3T MRI by official radiology report. Epilepsy protocols were used for the 3T and 7T acquisitions. Post-processing of the 7T T1-weighted magnetization-prepared two rapid acquisition gradient echoes sequence was performed using the morphometric analysis program (MAP) with comparison to a normal database consisting of 50 healthy controls. Review of 7T was performed by an experienced board-certified neuroradiologist and at the multimodal patient management conference. The clinical significance of 7T findings was assessed based on intracranial electroencephalography (ICEEG) ictal onset, surgery, postoperative seizure outcomes, and histopathology. Results: Unaided visual review of 7T detected previously unappreciated subtle lesions in 22% (15/67). When aided by 7T MAP, the total yield increased to 43% (29/67). The location of the 7T-identified lesion was identical to or contained within the ICEEG ictal onset in 13 of 16 (81%). Complete resection of the 7T-identified lesion was associated with seizure freedom (P = .03). Histopathology of the 7T-identified lesions encountered mainly focal cortical dysplasia (FCD). 7T MAP yielded 25% more lesions (6/24) than 3T MAP, and showed improved conspicuity in 46% (11/24). Significance: Our data suggest a major benefit of 7T with post-processing for detecting subtle FCD lesions for patients with pharmacoresistant epilepsy and nonlesional 3T MRI.
The role of fast activity as a potential biomarker in localization of the epileptogenic zone (EZ) remains controversial due to recently reported unsatisfactory performance.We recently identified a "fingerprint" of the EZ as a time-frequency pattern that is defined by a combination of preictal spike(s), fast oscillatory activity, and concurrent suppression of lower frequencies. Here we examine the generalizability of the fingerprint in application to an independent series of patients (11 seizure-free and 13 nonseizure-free after surgery) and show that the fingerprint can also be identified in seizures with lower frequency (such as beta) oscillatory activity. In the seizure-free group, only 5 of 47 identified EZ contacts were outside the resection. In contrast, in the non-seizure-free group, 104 of 142 identified EZ contacts were outside the resection. We integrated the fingerprint prediction with the subject's MR images, thus providing individualized anatomical estimates of the EZ. We show that these fingerprint-based estimates in seizure-free patients are almost always inside the resection. On the other hand, for a large fraction of the nonseizure-free patients the estimated EZ was not well localized and was partially or completely outside the resection, which may explain surgical failure in such cases. We also show that when mapping fast activity alone onto MR images, the EZ was often over-estimated, indicating a reduced discriminative ability for fast activity relative to the full fingerprint for localization of the EZ. K E Y W O R D Sepileptogenic zone, high-frequency oscillations, localization-related epilepsy, partial seizure, stereo-EEG
We describe a patient with unilateral periventricular nodular heterotopia (PNH) and drug-resistant epilepsy, whose SEEG revealed that seizures were arising from the PNH, with the almost simultaneous involvement of heterotopic neurons (“micronodules”) scattered within the white matter, and subsequently the overlying cortex. Laser ablation of heterotopic nodules and the adjacent white matter rendered the patient seizure free.This case elucidates that “micronodules” scattered in white matter between heterotopic nodules and overlying cortex might be another contributor in complex epileptogenicity of heterotopia. Detecting patient-specific targets in the epileptic network of heterotopia creates the possibility to disrupt the pathological circuit by minimally invasive procedures.
The combination of interictal and ictal MEG is a valuable tool for identification of the epileptogenic tuber/tubers in presurgical work-up in patients with TS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.