The authors conclude that the proposed CAD system can identify dissimilar nodule candidates in the multiple heterogeneous datasets. It could be considered as a useful tool to support radiologists during screening trials.
In this paper, a new methodology for choosing design parameters of level-crossing analog-to-digital converters (LC-ADCs) is presented that improves sampling accuracy and reduces the data stream rate. Using the MIT-BIH Arrhythmia dataset, several LC-ADC models are designed, simulated and then evaluated in terms of compression and signal-to-distortion ratio. A new one-dimensional convolutional neural network (1D-CNN) based classifier is presented. The 1D-CNN is used to evaluate the event-driven data from several LC-ADC models. With uniformly sampled data, the 1D-CNN has 99.49%, 92.4% and 94.78% overall accuracy, sensitivity and specificity, respectively. In comparison, a 7-bit LC-ADC with 2385Hz clock frequency and 6-bit clock resolution offers 99.2%, 89.98% and 91.64% overall accuracy, sensitivity and specificity, respectively. It also offers 3x data compression while maintaining a signal-to-distortion ratio of 21.19dB. Furthermore, it only requires 49% floatingpoint operations per second (FLOPS) for cardiac arrhythmia classification in comparison with the uniformly sampled ADC.Finally, an open-source event-driven arrhythmia database is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.