Estimating the fundamental frequency and harmonic parameters is basic for signal modeling in a power supply system. This paper presents a complexity-reduced algorithm for signal reconstruction in the time domain from irregularly spaced sampling values. Differing from the existing parameter estimation algorithms, either in power quality monitoring or in harmonic compensation, the proposed algorithm enables a simultaneous estimation of the fundamental frequency, the amplitudes and phases of harmonic waves. The reduction in complexity is achieved owing to completely new analytical and summarized expressions that enable a quick estimation at a low numerical error. It is proved that the estimation performance of the proposed algorithm can attain Cramer-Rao lower bound (CRLB) for sufficiently high signal-to-noise ratios. The proposed algorithm can be applied in signal reconstruction, spectral estimation, system identification, as well as in other important signal processing problems. The simulation and experimental results verify the effectiveness of the proposed algorithm.