[1] OH Meinel emissions from different vibrational levels are known to occur at slightly different altitudes in the terrestrial airglow. Earlier model studies suggested quenching by atomic oxygen to be a principal cause of these vertical shifts. Here we employ the tropical mesopause regioncharacterized by pronounced semiannual variations-as a natural laboratory to test the hypothesis that vertical shifts between different OH Meinel bands are a consequence of quenching by atomic oxygen. Nighttime satellite measurements of OH(3-1) and OH(6-2) volume emission rate profiles and atomic oxygen with Scanning Imaging Absorption Spectrometer for Atmospheric Chartography on Envisat are used for this purpose. Upper mesospheric atomic oxygen profiles are retrieved from measurements of the O( 1 S-1 D) green line emission. The results demonstrate that vertical shifts between the OH bands investigated are indeed correlated with the amount of atomic oxygen in the upper mesosphere, corroborating the hypothesis. Citation: von Savigny, C., and O. Lednyts'kyy (2013), On the relationship between atomic oxygen and vertical shifts between OH Meinel bands originating from different vibrational levels, Geophys. Res. Lett., 40,[5821][5822][5823][5824][5825]
Abstract. Vertical distributions of atomic oxygen concentration ([O]) in the mesosphere and lower thermosphere (MLT) region were retrieved from sun-synchronous SCIAMACHY/Envisat (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY on board the Environmental Satellite) limb measurements of the oxygen 557.7 nm green line emission in the terrestrial nightglow. A band pass filter was applied to eliminate contributions from other emissions, the impact of measurement noise and auroral activity. Vertical volume emission rate profiles were retrieved from integrated limb-emission rate profiles under the assumption that each atmospheric layer is horizontally homogeneous and absorption and scattering can be neglected. The radiative transfer problem was solved using regularized total least squares minimization in the inversion procedure. Atomic oxygen concentration profiles were retrieved from data collected for altitudes in the range 85–105 km with approximately 4 km vertical resolution during the time period from August 2002 to April 2012 at approximately 22:00 local time. The retrieval of [O] profiles was based on the generally accepted two-step Barth transfer scheme including consideration of quenching processes and the use of different available sources of temperature and atmospheric density profiles. A sensitivity analysis was performed for the retrieved [O] profiles to estimate maximum uncertainties assuming independent contributions of uncertainty components. Errors in photochemical model parameters depending on temperature uncertainties and random errors of model parameters contribute less than 50% to the overall [O] retrieval error. The retrieved [O] profiles were compared with reference [O] profiles provided by SABER/TIMED (Sounding of the Atmosphere using Broadband Emission Radiometry instrument on board the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics satellite) or by the NRLMSISE-00 (Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar Extended model, year: 2000) and SD-WACCM4 (Whole Atmosphere Community Climate Model with Specified Dynamics, version 4). A comparison of the retrieved [O] profiles with the reference [O] profiles led to the conclusion that the photochemical model taking into account quenching of O(1S) by O2, O(3P), and N2 and the SABER/TIMED model as a source of temperature and density profiles are the most appropriate choices for our case. The retrieved [O] profile time series exhibits characteristic seasonal variations in agreement with satellite observations based on analysis of OH Meinel band emissions and atmospheric models. A pronounced 11-year solar cycle variation can also be identified in the retrieved atomic oxygen concentration time series.
Abstract. Electronically excited states of molecular and atomic oxygen (six O2 and two O) were implemented in the proposed Multiple Airglow Chemistry (MAC) model as minor species coupled with each other as well as with the ground states of O2 and O to represent the photochemistry in the upper mesosphere and lower thermosphere (MLT) region. The MAC model combines chemical processes of well-known photochemical models related to identified O2 and O species and some additional processes. Concentrations of excited O2 and O species were retrieved using the MAC model on the basis of the multiple nightglow emissions measured in situ during the Energy Transfer in the Oxygen Nightglow (ETON) rocket campaign. The proposed retrieval procedure to obtain the concentrations of these minor species in the MLT region is implemented by avoiding a priori data sets. Unknown and poorly constrained reaction rates were tuned, and the reaction rates of the well-known models were updated with the MAC model by comparing in situ and evaluated emission profiles as well as in situ and retrieved O concentration profiles. As a result, precursors of O2 and O species responsible for the transitions considered in the MAC model are identified and validated.
We report on lunar semidiurnal tidal signatures in several parameters of the terrestrial airglow, including OI green line emission rates, OH(3‐1) emission rates, as well as OH emission altitude, atomic oxygen, and OH(3‐1) rotational temperature in the mesosphere/lower thermosphere region. The parameters were retrieved from spaceborne measurements of nightglow emissions at low latitudes with the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography instrument on the Envisat satellite. The identified lunar tidal signatures in airglow emissions have amplitudes of a few percent and are highly significant statistically. Moreover, the signatures observed in the different parameters analyzed show a coherent behavior consistent with the view that they are caused by vertical motions associated with vertical transport of atomic oxygen and adiabatic cooling/heating. The observed lunar semidiurnal tidal signature in temperature is in good agreement with model simulations with the global scale wave model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.